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Abstract

In the present contribution, we first prove the existence of m-fold simply-connected V-states close to
the unit disc for Euler-α equations. These solutions are implicitly obtained as bifurcation curves from the
circular patches. We also prove the existence of quasi-periodic in time vortex patches close to the Rankine
vortices provided that the scale parameter α belongs to a suitable Cantor-like set of almost full Lebesgue
measure. The techniques used to prove this result are borrowed from the Berti-Bolle theory in the context
of KAM for PDEs.
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1 Euler-α equations and main results

We consider the Euler-α planar model with parameter α ⩾ 0 given by
∂tu+ (v · ∇)u+ (∇v)⊤u+∇π = 0 in R+ × R2

∇ · v = ∇ · u = 0
u = v − α2∆v
v(0, ·) = v0.

(1.1)

This model is a regularization of Euler equations describing the flow of an incompressible fluid on spatial scales
larger than the length scale parameter α. It has been introduced in the context of averaged fluid models, see
[52, 53]. In the literature, v and u are called the filtered and unfiltered velocities, respectively. Actually, u
corresponds to the velocity field of the fluid. Notice that (∇v)⊤ denotes the transpose of the Jacobi matrix for
v, namely

(∇v)⊤ =

(
∂vj

∂xi

)
1⩽i,j⩽2
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The pressure term π is linked to the pressure field p of the fluid through the relation

π ≜ p− 1
2 |v|

2 − α2

2 |∇v|2.

Remark that we formally recover the classical Euler model, by taking α = 0 in the above set of equations. The
rigorous justification of this convergence can be found in [59]. In the sequel, we assume that α > 0. Let us
consider the unfiltered vorticity ω defined by

ω ≜ ∇⊥ · u = ∇⊥ · (Id− α2∆)v, ∇⊥ ≜

(
−∂2
∂1

)
. (1.2)

Applying the operator ∇⊥· to the first equation in (1.1), we find, after straightforward computations using the
divergence-free conditions, that ω is a solution to the following active scalar equation

∂tω + v · ∇ω = 0. (1.3)

Such kind of nonlinear and nonlocal transport PDE has been widely studied during the past decade in fluid
dynamics, especially regarding the periodic motions and more recently the quasi-periodic ones. We shall discuss
in this introduction two types of active scalar models in the form (1.3) which will be of interest in the sequel.
The first example is given by the classical velocity-vorticity formulation of 2D Euler equations, namely

∂tω
E + vE · ∇ωE = 0, vE = ∇⊥ΨE, ∆ΨE = ωE.

In this case, the potential velocity ΨE is obtained as the convolution with the Green function associated to the
Laplace problem set in the whole plane, namely

ΨE = GE ∗ ωE, GE ≜ 1
2π log(| · |). (1.4)

The second example is given by quasi-geostrophic shallow-water equations with parameter λ > 0, shorten in what
follows into (QGSW )λ, which is a geophysical asymptotic model describing the circulation of the atmosphere
at large time and space scales [68, p.220]. This model is given by

∂tq
SW + vSW

λ · ∇qSW = 0, vSW

λ = ∇⊥ΨSW

λ , (∆− λ2)ΨSW

λ = qSW.

In this case, the potential velocity ΨSW

λ is obtained as the convolution with the Green function associated to
the Helmoltz problem set in the whole plane, namely

ΨSW

λ = GSW

λ ∗ qSW, GSW

λ ≜ − 1
2πK0(λ| · |), (1.5)

where K0 is the modified Bessel function of second kind. We refer to the Appendix A for a presentation of
modified Bessel functions and some of their useful properties. The parameter λ is called Rossby deformation
length or Rossby radius and quantifies the rotation/stratification balance for the fluid. Few results are known
regarding this model and we may refer to [26, 66] for the mathematical context of interest in the sequel and to
[27, 28] for interesting numerical simulations in the physical literature.

This paper is based on the following fundamental relation, which can be found for instance in [7, 63], giving
a nice expression of the Euler-α velocity field v.

v = ∇⊥Ψ, Ψ ≜ G ∗ ω, G ≜ GE −GSW
1
α
. (1.6)

Due to the importance of this formula for our work, we provide in Section 2 its detailed justification. In our
approach, we take advantage of this explicit link with Euler and QGSW equations to prove the existence of
periodic and quasi-periodic vortex patch motions for the Euler-α equations. In particular, we shall make appeal
to the computations carried out in [14, 17, 26, 42, 49, 51] relatively to these contexts. For the Euler-α model,
the global existence and uniqueness of classical solutions has been obtained in [18]. The well-posedness of weak
solutions in the space of bounded Radon measures for (1.1) has been proved in [63]. Indeed, the formula (1.6)
and (A.4) imply that the vector field v is less singular than the Euler one, which allows to reach the class of
measures for the well-posedness. An other consequence is that the Yudovitch theory also applies in this context
and the weak solutions are Lagrangian. This fact is the starting point to be able to look for vortex patches.
Before presenting the notion of vortex patch solutions together with the main results of this study, we may
end this presentation by briefly mentioning that the 2D Euler-α model has also been intensively studied in
the case of subset of R2 domains with suitable boundary conditions. We may for instance refer the reader to
[19, 20, 21, 60, 72].
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Now, we shall present the notion of vortex patches and discuss some historical background about the periodic
and quasi-periodic settings. The techniques used to find these two kind of solutions are completely different. The
periodic solutions are obtained by using bifurcation theory from the stationary solutions and the quasi-periodic
ones appear in the context of KAM/Nash-Moser theories. Considering an open bounded simply-connected
domain D0 in R2 then the function 1D0

provides an initial datum in the Yudovitch class. Therefore, we have
existence and uniqueness of a global weak solution which, according to the transport structure of (1.3), takes
the following form

ω(t, ·) = 1Dt
,

where Dt is the image of D0 by the flow map associated to the velocity field v, namely

Dt = Φt(D0), Φt(x) = x+

ˆ t

0

v
(
s,Φs(x)

)
ds.

The resulting solution t 7→ 1Dt
is called a vortex patch with initial patch 1D0

. Given any parametrization
z(t, ·) : T → ∂Dt of the boundary of the patch at time t, it is well-known since the works [49, 50] that for
an active scalar equation, as in our case, the particles on the boundary move with the flow and remain at the
boundary. Hence, at least in the smooth case, one can write the following equation called vortex patch equation.(

∂tz(t, θ)− v
(
t, z(t, θ)

))
· n
(
t, z(t, θ)

)
= 0, (1.7)

where n(t, z(t, θ)) is the outward normal vector to the boundary ∂Dt of Dt at the point z(t, θ). Since the
dynamics is planar, it is more convenient to use the complex notation. In particular, the Euclidean structure
of R2 is transposed into the complex world in the following way :

∀u = a+ ib ∈ C, ∀v = a′ + ib′ ∈ C, u · v ≜ ⟨u, v⟩R2 = Re (uv) = aa′ + bb′.

Remarking that n(t, z(t, θ)) is real-proportional to i∂θz(t, θ), then we get the complex form of the contour
dynamics motion (1.7),

Im
(
∂tz(t, θ)∂θz(t, θ)

)
= Im

(
v(t, z(t, θ))∂θz(t, θ)

)
. (1.8)

▶ Uniformly rotating solutions.
Uniformly rotating vortex patches, also called V-states, form a particular subclass of vortex patch solutions
taking the form

Dt = eiΩtD0. (1.9)

Any solution of this form is rotating with a time independent angular velocity Ω ∈ R around its center of mass
fixed at the origine. If Ω = 0, then it is stationary, otherwise it is time periodic with period 2π

Ω . Historically,
the first example of V-states was provided by Kirchhoff [55] who showed that for Euler equations any ellipse
with semi-axis a and b uniformly rotates for an angular velocity Ω = ab

(a+b)2 . Observe from (1.6), (1.4) and (1.5)

that the stream function Ψ admits a radial Green kernel. Therefore, any radial initial profile would generate a
stationary solution. In particular, the Rankine vortices given by the discs provide such examples. The purpose
of this study is to prove the existence of periodic (and quasi-periodic) vortex patch structures close to these
equilibrium states. Due to the invariance by dilation of the model, it is sufficient to search for these type of
solutions close to the unit disc. The analytical study of existence of V-states close to the unit disc for Euler
equations goes back to the work of Burbea [17]. We also refer to [49] for a more recent and rigorous point of
view. Indeed, combining Crandall-Rabinowitz’s Theorem B.1 and complex analysis, one can find the existence
of branches of m-fold V-states bifurcating from the unit disc at the angular velocities

ΩE

m ≜
m− 1

2m
. (1.10)

Later on, a lot of attention has been paid to such type of solutions for different nonlinear transport fluid models
like Euler equations in the plane or in the unit disc, generalised surface quasi-geostrophic equations (SQG)α
and (QGSW )λ equations. Also, several topological and regularity settings were explored and we may refer
to [22, 26, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 50, 65, 66]. Nevertheless, it seems that
the Euler-α model has been set aside from these studies. Hence, we propose here to study the emergence of
simply-connected V-states for this model. For this task, due to the decomposition (1.6), we may emphasize
the result in [26], where they found the following angular velocities related to the modified Bessel functions for
which the bifurcation of simply-connected V-states from the unit disc occurs

ΩSW

m (λ) ≜ I1(λ)K1(λ)− Im(λ)Km(λ). (1.11)

Now, we shall present the first theorem proved in this study and dealing with periodic simply-connected patches
bifurcating from the Rankine vortices.
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Theorem 1.1. Let α > 0 and β ∈ (0, 1). For any m ∈ N∗, there exists a branch of m-fold V-states of regularity
C1+β bifurcating from the unit disc at the angular velocity

ΩE

m(α) ≜
m− 1

2m
−
(
I1
(
1
α

)
K1

(
1
α

)
− Im

(
1
α

)
Km

(
1
α

) )
= ΩE

m −ΩSW

m

(
1
α

)
(1.12)

for Euler-α equations (1.1).

Remark 1.1. (i) Observe that the bifurcation frequencies (1.12) are exactly the superposition of those of
Euler (1.10) and (QGSW ) 1

α
(1.11) models which is in accordance with the remark in Section 2 and the

structure of the vortex patch equation (1.8).

(ii) The following convergences hold true.

ΩE

m(α) −→
m→∞

1
2 − I1

(
1
α

)
K1

(
1
α

)
≜ ΩE

∞(α), ΩE

m(α) −→
α→0

m−1
2m = ΩE

m.

(iii) The case m = 1 corresponds to a translation of the trivial solution, see Remark 3.1.

The Theorem 1.1 is proved by using Crandall-Rabinowitz’s Theorem B.1 in the spirit of the previous works
mentioned above. For that purpose, we reformulate the vortex patch equation (1.8) in the uniformly rotating
framework with conformal mappings. We chose to use the conformal functional setting in order to be able
to take advantage of the computations already done in [26, 49]. Nevertheless, one could also use the polar
parametrization similarly to the next result on quasi-periodic solutions. Introducing, for an initial domain D0

close to the unit disc D, the conformal parametrization Φ : C \ D → C \D0 in the form

Φ(z) = z + f(z), f(z) =

∞∑
n=0

an
zn
, an ∈ R,

we can reformulate the vortex patch equation (1.8) in the uniformly rotating context as the following equation

∀w ∈ T, Fα(Ω, f)(w) = 0, Fα(Ω, f)(w) ≜ Im
{(

ΩΦ(w) + IE(f)(w) + ISW(f)(α,w)
)
wΦ′(w)

}
,

with

IE(f)(w) ≜
 
T
Φ′(τ) log

(
|Φ(w)− Φ(τ)|

)
dτ, ISW(f)(α,w) ≜

 
T
Φ′(τ)K0

(
1
α |Φ(τ)− Φ(w)|

)
dτ.

Remarking that the disc provides a line of solutions Fα(Ω, 0) = 0 for Ω ∈ R, we shall apply the local bifurcation
theory to find non-trivial solutions. In Proposition 3.1, we prove that the functional Fα is of class C1 with respect
to some Hölder regularity spaces and its linearized operator at the equilibrium has the Fredholm property and
expresses as the following Fourier multiplier

∀w ∈ T, dfFα(Ω, 0)(w) =

∞∑
n=0

an(n+ 1)
(
ΩE

n+1(α)− Ω
)
Im(wn+1).

The one dimensional kernel condition for applying bifurcation theory is ensured by the strict monotonicity of the
sequence

(
ΩE

n(α)
)
n∈N∗ which is checked using some refined estimates on modified Bessel functions, see Lemma

3.1. Finally, the transversality condition is a direct consequence of the Fourier decomposition of the linearized
operator and is checked in Proposition 3.2-(iv).

▶ Quasi-periodic in time vortex patches.
This topic is rather new in vortex patch dynamics and the tools used are borrowed from KAM/Nash-Moser
theories [2, 11, 57, 61]. Recall that a function r : R → R is said to be quasi-periodic if there exists d ∈ N∗,
r̂ = r̂(φ) : Td → R continuous and ω ∈ Rd such that

r(t) = r̂(ωt), ∀l ∈ Zd \ {0}, ω · l ̸= 0. (1.13)

The existence of quasi-periodic vortex patches close to the unit disc for the QGSW equations have been proved
in [51]. These solutions are obtained by selecting the Rossby deformation length in a massive Cantor set.
Similarly, in [40], the authors used the parameter inside the equations to generate quasi-periodic vortex patches
near the Rankine vortices for (SQG)α equations for suitable selected values of α. Here our work follows the same
idea relying on the free parameter α to obtain these solutions. We mention two other works recently obtained
for Euler equations. The first one concerns the quasi-periodic patches close to the Rankine vortices in the unit
disc presented in [42]. The second result, which can be found in [14], is relative to quasi-periodic patches close
to the Kirchhoff ellipses. In both cases, this is a geometrical parameter which, when taken among a Cantor-like
set of admissible parameters, allows to find quasi-periodic solutions. Our second result reads as follows.
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Theorem 1.2. Let 0 < α0 < α1 and S ⊂ N∗. There exists ε0 ∈ (0, 1) small enough such that for every choice
of amplitudes a = (aj)j∈S ∈ (R∗

+)
|S| enjoying the smallness condition

|a| ⩽ ε0,

there exists a Cantor-like set C∞ ⊂ (α0, α1) with asymptotically full Lebesgue measure as a → 0, i.e.

lim
a→0

|C∞| = α1 − α0,

such that for any α ∈ C∞, the equation (1.3) admits a time quasi-periodic vortex patch solution with diophantine
frequency vector ωpe(α, a) ≜ (ωj(α, a))j∈S ∈ R|S| and taking the form

ω(t, ·) = 1Dt , Dt =
{
ℓeiθ, θ ∈ [0, 2π], 0 ⩽ ℓ ⩽ R(t, θ)

}
, R(t, θ) =

√
1 + 2r(t, θ), (1.14)

r(t, θ) =
∑
j∈S

aj cos
(
jθ + ωj(α, a)t

)
+ p
(
ωpe(α, a)t, θ

)
.

The diophantine frequency vector satisfies the following asymptotic

ωpe(α, a) −→
a→0

(−ΩE

j (α))j∈S,

where ΩE
j (α) are the equilibrium frequencies defined by

ΩE

j (α) ≜ j
(
Ω+ΩE

|j|(α)
)
,

with ΩE

|j|(α) as in (1.12). In addition, the perturbation p : T|S|+1 → R is an even function satisfying for some
large index of regularity s,

∥p∥Hs(T|S|+1,R) =
a→0

o(|a|).

Now we shall briefly mention the key steps of the proof of Theorem 1.2 which are similar to the ones of
[40, 42, 51]. The core of the proof of Theorem 1.2 relies on Berti-Bolle theory [11] and [40, Sec. 6]. We mention
here some results which have been obtained using this theory [3, 5, 6, 12, 13, 15, 16, 29, 31]. Plugging the
ansatz (1.14) into the vortex patch equation (1.8) provides a nonlinear Hamiltonian transport PDE for the
radial deformation r in the form

∂tr = ∂θ∇H (r), (1.15)

with Hamiltonian H related to the kinetic energy and the angular momentum. This equation satisfies the
reversibility property, namely if (t, θ) 7→ r(t, θ) is a solution, then so is (t, θ) 7→ r(−t,−θ). After a rescalling
r 7→ εr the equation (1.15) can be seen as a quasilinear perturbation of its linearization at the equilibrium
(ε = 0), see (4.42). As mentioned in Lemmata 4.5 and 4.1, this latter is an integrable Hamiltonian system,
namely for any finite set of Fourier modes S ⊂ N∗ of cardinal d ∈ N∗, the linearized equation at the Rankine
patch admits, for almost every α in (α0, α1), reversible quasi-periodic solutions with d-dimensional frequency
vector −ωEq(α) ≜

(
− ΩE

j (α)
)
in the form

r(t, θ) =
∑
j∈S

rj cos
(
jθ − ΩE

j (α)t
)
, rj ∈ R∗.

The property (1.13) for ωEq(α) holds for almost every α by imposing some Diophantine conditions. The measure
of the corresponding set is a consequence of the transversality condition in Lemma 4.9-(i) together with the
Rüssmann Lemma 4.6. Notice that the transversality condition is itself a consequence of the non-degeneracy of
the function α 7→ ωEq(α) on [α0, α1], see Lemma 4.8. The introduction of the Diophantine conditions imply the
invertibility of the linearized operator at the equilibrium state but with a fixed loss of derivatives. Therefore,
to find quasi-periodic solutions for the nonlinear model, we may apply a Nash-Moser scheme. For this aim we
reformulate the problem in terms of embedded tori. This is done by splitting the phase space L2

0(T) in (4.12)
associated with (1.15) into tangential LS and normal L2

⊥ subspaces, see (4.43). Then we introduce in (4.44) the
action-angle variables (I, ϑ) by using a symplectic polar change of coordinates for the Fourier coefficients on the
tangential subspace. Thus, any function r ∈ L2

(
Td
φ, L

2
0(Tθ)

)
can be related to an embedded torus, namely

r(φ, ·) = A
(
i(φ)

)
, i : Td → Td × Rd × L2

⊥
φ 7→

(
ϑ(φ), I(φ), z(φ)

) , A : Td × Rd × L2
⊥ → L2

0(T).

Then, the search of reversible quasi-periodic solutions to (1.15) is equivalent to looking for reversible tori
solutions to

F (i, κ, α, ω, ε) = 0, (1.16)
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where F is a nonlinear functional whose complete expression can be found in (4.48). This provides a true
solution of the original problem for the particular value

κ = −ωEq(α). (1.17)

To find non-trivial solutions of (1.16), we apply a Nash-Moser scheme. At each step, we shall find an approximate
right inverse, with nice tame estimates, of the linearized operator di,κF (i0) at the reversible torus i0 of the
current step. Applying the Berti-Bolle theory [11] and [40, Sec. 6], one can conjugate the linearized operator
di,κF (i0) by a suitable diffeomorphism of the toroidal phase space Td×Rd×L2

⊥ in order to obtain a triangular
system in the action-angle-normal variables up to nice error terms. Then to solve the triangular system, it
is sufficient to find an almost approximate right inverse for the linearized operator in the normal directions
denoted L⊥ and related to the linearized operator Lεr of (1.15) through the relation (4.53). To do so, we
conjugate L⊥ to a constant coefficients operator up to error terms. This is the content of the Section 4.5.
First, in Proposition 4.3 we use a KAM reduction process with quasi-periodic symplectic change of variables
to reduce the transport part of Lεr. Then, in Proposition 4.4 we look at the localization effects in the normal
directions to recover the reduction of the transport part for L⊥. This provides a diagonal operator of order 1
plus a remainder of order (0,−1) in the variables (φ, θ). Finally, in Proposition 4.5 we use a KAM reduction
process in the Toeplitz operators class to reduce the remainder term. Each KAM reduction occurs for suitable
restrictions of the parameters (α, ω) to a Cantor-like set. In addition, the inversion of the final diagonal
operator also requires an extraction of parameters. The Nash-Moser process constructs a non-trivial solution
(α, ω) 7→ (i∞(α, ω), κ∞(α, ω)) with reversible torus i∞ modulo restriction of the parameters to a Cantor set in
(α, ω) obtained gathering all the restrictions of all the steps for the contruction of the almost approximate right
inverses of the linearized operators. Then, coming back to (1.17), we rigidify the frequency ω into ω(α, ε) so
that

κ∞
(
α, ω(α, ε)

)
= −ωEq(α). (1.18)

We mention that the introduction of the free-parameter κ was required to apply the Berti-Bolle theory along the
scheme, more precisely to invert the triangular system. The condition (1.18) gives a final Cantor set in α only
that we must check it is not empty. This latter fact is obtained in Proposition 4.8 by estimating the Lebesgue
measure of the set through the Rüssmann Lemma 4.6 together with the perturbed transversality conditions.

2 The stream function associated to the filtered velocity

This short section is devoted to the justification of the formula (1.6) which is the fundamental relation for
this work. Recall that the identity (1.6) was already observable in the literature, for instance in [7, 63]. The
divergence-free property for v and u in (1.1) implies the existence of stream functions Ψ and ψ such that

v = ∇⊥Ψ, u = ∇⊥ψ

and the goal of this section is to find a nice expression for the velocity potential Ψ. Notice that, according to
the third equation in (1.1), the stream functions are linked through the relation

ψ = (1− α2∆)Ψ.

Then, (1.2) implies
ω = ∆ψ = (1− α2∆)∆Ψ.

We deduce from (1.4) and (1.5) that

Ψ = −1
α2 G

E ∗GSW
1
α

∗ ω ≜ G ∗ ω.

Now our goal is to compute G. One can write

G(x) = 1
4π2α2

ˆ
R2

K0

(
|y|
α

)
log(|x− y|) dA(y)

= 1
8π2α2

ˆ
R2

K0

(
|y|
α

)
log
(
|x− y|2

)
dA(y)

= 1
8π2α2

ˆ
R2

K0

(
|y|
α

)
log
(
|x|2 + |y|2 − 2x · y

)
dA(y),

where dA denotes the planar Lebesgue measure. Writing x = (R cos(θ), R sin(θ)), then a polar change of
variables yields

G(x) = 1
8π2α2

ˆ ∞

0

ˆ 2π

0

rK0

(
r
α

)
log
(
R2 + r2 − 2Rr cos(θ − η)

)
drdη

= log(R)
2πα

ˆ ∞

0

r
αK0

(
r
α

)
dr + 1

8π2α

ˆ ∞

0

r
αK0

(
r
α

)
IP
(
r
R

)
dr,
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where IP denotes the Poisson integral defined by

∀x ∈ R, IP(x) =

ˆ π

−π

log
(
1 + x2 − 2x cos(η)

)
dη.

It is well-known, see for instance [23], that the Poisson integral admits the following explicit formula{
IP(x) = 0 if |x| ⩽ 1
IP(x) = 4π log(|x|) if |x| > 1.

Therefore,

G(x) = log(R)
2πα

ˆ ∞

0

r
αK0

(
r
α

)
dr + 1

2πα

ˆ ∞

R

r
αK0

(
r
α

)
log
(
r
R

)
dr

= log(R)
2πα

ˆ R

0

r
αK0

(
r
α

)
dr + 1

2πα

ˆ ∞

R

r
αK0

(
r
α

)
log (r) dr.

A change of variables together with (A.3), (A.7) and (A.8) give

log(R)
2πα

ˆ R

0

r
αK0

(
r
α

)
dr = log(R)

2π

ˆ R
α

0

uK0(u)du = log(R)
2π

(
1− R

αK1

(
R
α

) )
and

1
2πα

ˆ ∞

R

r
αK0

(
r
α

)
log (r) dr = log(α)

2π

ˆ ∞

R
α

uK0 (u) du+ 1
2π

ˆ ∞

R
α

uK0 (u) log (u) dr

= R log(α)
2πα K1

(
R
α

)
+ 1

2π

ˆ ∞

R
α

uK0 (u) log (u) du.

An integration by parts in the last integral together with (A.8) lead to

1
2π

ˆ ∞

R
α

uK0 (u) log (u) du = R
2παK1

(
R
α

)
log
(
R
α

)
+ 1

2π

ˆ ∞

R
α

K1 (u) du

= R
2παK1

(
R
α

)
log (R)− R log(α)

2πα K1

(
R
α

)
+ 1

2πK0

(
R
α

)
.

Gathering the foregoing computations and reminding that R = |x| we obtain

G(x) = 1
2π log(|x|) + 1

2πK0

(
|x|
α

)
= GE(x)−GSW

1
α
(x). (2.1)

Notice that we recover a radial function as a convolution of two radial functions. In particular, any radial profil
gives a stationary solution for the active scalar equation (1.3) satisfied by ω.

3 Periodic rigid motion

This section is devoted to the proof of the Theorem 1.1 which is an application of the Crandall-Rabinowitz’s
Theorem B.1. This latter is applied to a reformulation of the vortex patch equation (1.8) in the uniformly
rotating framework.

3.1 Function spaces and reformulation of the vortex patch equation

The goal of this subsection is to set up the contour dynamics equation for the Euler-α V-states near the Rankine
vortices. Consider an ansatz (1.9) with simply-connected domain D0 and rotating uniformly with some angular
velocity Ω. At time t ⩾ 0, the boundary ∂Dt can be parametrized by

z(t, θ) = eiΩtz(0, θ), θ ∈ [0, 2π], z(0, 0) = z(0, 2π). (3.1)

With this parametrization, the left hand side of (1.8) becomes

Im
(
∂tz(t, θ)∂θz(t, θ)

)
= ΩRe

(
z(0, θ)∂θz(0, θ)

)
. (3.2)

As for the computation of the right hand-side of (1.8), it is obtained from the Biot-Savart law. Note that the
velocity potential Ψ given by (1.6) writes in this context

Ψ(t, z) = 1
2π

ˆ
Dt

log(|z − ξ|)dA(ξ) + 1
2π

ˆ
Dt

K0

(
1
α |z − ξ|

)
dA(ξ).
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Notice that the real notation x ∈ R2 has been replaced by the complex notation z ∈ C. To get the Biot-Savart
law we shall use Stokes’ Theorem in complex notation

2i

ˆ
D

∂ξf(ξ, ξ)dA(ξ) =

ˆ
∂D

f(ξ, ξ)dξ.

Hence, by making the identification 2i∂z = ∇⊥ leading to v(t, z) = 2i∂zΨ(t, z) one deduces, after a regularization
procedure similar to the one explained in the proof of [42, Lem. 2.1], that

v(t, z) = − 1

2π

ˆ
∂Dt

log(|z − ξ|)dξ − 1

2π

ˆ
∂Dt

K0

(
1
α |z − ξ|

)
dξ. (3.3)

One easily obtains from (3.1), (3.3) and change of variables,

v
(
t, z(t, θ)

)
= eiΩtv

(
0, z(0, θ)

)
. (3.4)

Thus, combining (3.4) and (3.1), we obtain

Im
(
v
(
t, z(t, θ)

)
∂θz(t, θ)

)
= Im

(
v
(
0, z(0, θ)

)
∂θz(0, θ)

)
. (3.5)

Gathering (3.2) and (3.5), the equation (1.8) becomes

ΩRe
(
z(0, θ)∂θz(0, θ)

)
= Im

(
v(0, z(0, θ))∂θz(0, θ)

)
. (3.6)

Therefore, denoting z′ a tangent vector to the boundary ∂D0 at the point z, one gets from (3.3) and (3.6) that
for any z ∈ ∂D0,

ΩRe
(
zz′
)
+ Im

([
1

2π

ˆ
∂D0

log
(
|z − ξ|

)
dξ +

1

2π

ˆ
∂D0

K0

(
1
α |z − ζ|

)
dζ

]
z′
)

= 0. (3.7)

In accordance with the previous works in the field beginning with the one of Burbea [17], we should rewrite the
equation (3.7) by using conformal mappings. For that purpose we shall now present the function spaces used
throughout this first part on periodic solutions. Notice that we shall identify 2π-periodic g : R → C functions
with functions f : T → C defined on the torus T = R/2πZ ∼= U through the relation

f(w) = g(θ), w = eiθ.

In this part, we shall consider the following notation for the mean value line integral of any continuous function
f defined on the torus T  

T
f(τ)dτ ≜

1

2iπ

ˆ
T
f(τ)dτ ≜

1

2π

ˆ 2π

0

f
(
eiθ
)
eiθdθ.

Now, we introduce the Hölder spaces on the unit circle. Given β ∈ (0, 1), we denote by Cβ(T) the space of
continuous functions f such that

∥f∥Cβ(T) ≜ ∥f∥L∞(T) + sup
(τ,w)∈T2

τ ̸=w

|f(τ)− f(w)|
|τ − w|β

< +∞

and we denote by C1+β(T) the space of C1 functions with β-Hölder continuous derivative such that

∥f∥C1+β(T) ≜ ∥f∥L∞(T) +
∥∥∥ df
dw

∥∥∥
Cβ(T)

< +∞.

For β ∈ (0, 1), we set

X1+β ≜

{
f ∈ C1+β(T) s.t. ∀w ∈ T, f(w) =

+∞∑
n=0

fnw
n, fn ∈ R

}
,

Y β ≜

{
g ∈ Cβ(T) s.t. ∀w ∈ T, g(w) =

+∞∑
n=1

gnen(w), gn ∈ R

}
, en(w) ≜ Im(wn).

Remark that the m-fold symmetry property can be translated in the functional spaces as follows

X1+β
m ≜

{
f ∈ X1+β s.t. ∀w ∈ T, f(w) =

+∞∑
n=1

fnm−1w
nm−1

}
,

Y β
m ≜

{
g ∈ Y β s.t. ∀w ∈ T, g(w) =

+∞∑
n=1

gnmenm(w)

}
.
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We shall also consider the following balls of radius r > 0 in X1+β and X1+β
m , respectively

B1+β
r ≜

{
f ∈ X1+β s.t. ∥f∥C1+β(T) < r

}
, B1+β

r,m ≜ B1+β
r ∩X1+β

m .

Based on the Riemann mapping Theorem, we may parametrize the boundary of D0 by considering the conformal
mapping Φ : C \ D → C \D0 given by

Φ(z) ≜ z + f(z), f(z) =

∞∑
n=0

an
zn
, an ∈ R.

Here, f is in B1+β
r for small r. We have Φ(T) = ∂D0 and we mention that the link between the regularity of

the mapping and of the boundary is given by Kellogg-Warschawski’s Theorem [69, 64]. For w ∈ T, a tangent
vector to the boundary ∂D0 at the point z = Φ(w) is given by

z′ = −iwΦ′(w).

Plugging this into (3.7) and using the change of variables ξ = Φ(τ) give

∀w ∈ T, Fα(Ω, f)(w) = 0, Fα(Ω, f)(w) ≜ Im
{(

ΩΦ(w) + IE(f)(w) + ISW(f)(α,w)
)
wΦ′(w)

}
, (3.8)

with

IE(f)(w) ≜
 
T
Φ′(τ) log

(
|Φ(w)− Φ(τ)|

)
dτ, ISW(f)(α,w) ≜

 
T
Φ′(τ)K0

(
1
α |Φ(w)− Φ(τ)|

)
dτ.

Observe that the functional Fα makes appear a term IE associated with the Euler dynamics and a term ISW

corresponding to the QGSW equations.

3.2 Regularity aspects and structure of the linearized operator

Our next task is to study some regularity properties for the functional Fα defined in (3.8), look for the structure
of its linearized operator at the Rankine vortex and check some monotonicity property for its spectrum. We
first remark that the linearized operator at the equilibrium state acts as a Fourier multiplier according to the
functions spaces introduced in Section 3.1. More precisely, we have the following result.

Proposition 3.1. Let α > 0. Then the following properties hold true.

1. There exists r > 0 such that for any β ∈ (0, 1), the following hold true.

(i) Fα : R×B1+β
r → Y β is well-defined and of class C1.

(ii) For any m ∈ N∗, the restriction Fα : R×B1+β
r,m → Y β

m is well-defined.

(iii) The partial derivative ∂ΩdfFα : R×B1+β
r → L

(
X1+β , Y β

)
exists and is continuous.

(iv) For any Ω ∈ R, one has Fα(Ω, 0) = 0.

2. Let Ω ∈ R \
{

1
2 − I1

(
1
α

)
K1

(
1
α

) }
. Then the operator dfFα(Ω, 0) : X

1+β → Y β is Fredholm with index 0.

In addition, for h ∈ X1+β writing

∀w ∈ T, h(w) =

∞∑
n=0

anw
n, an ∈ R,

we have

∀w ∈ T, dfFα(Ω, 0)(w) =

∞∑
n=0

an(n+ 1)
(

n
2(n+1) −ΩSW

n+1

(
1
α

)
− Ω

)
en+1(w), (3.9)

with ΩSW

n as in (1.11).

Proof. 1. (i) The proof of the regularity is now classical. We refer the reader to [49] for the computations
associated with the Euler part and to [26] for the computations associated with the QGSW part.
(ii) For f ∈ B1+β

r,m , the following identities hold

∀w ∈ T, Φ
(
e

2iπ
m w

)
= e

2iπ
m Φ (w) , Φ′

(
e

2iπ
m w

)
= Φ′ (w) .
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Therefore, the change of variables τ 7→ e
2iπ
m τ implies

IE(f)
(
e

2iπ
m w

)
= e

2iπ
m IE(f)(w), ISW(f)

(
α, e

2iπ
m w

)
= e

2iπ
m ISW(f)(α,w).

Consequently,

∀w ∈ T, Fα(Ω, f)
(
e

2iπ
m w

)
= Fα(Ω, f)(w).

This symmetry property proves the desired result.
(iii) One readily has

∂ΩdfFα(Ω, f)[h](w) = Im
{
h′(w)wΦ(w) + h(w)wΦ′(w)

}
.

Hence, for (f, g) ∈ (B1+α
r )2 and h ∈ C1+α(T), we get∥∥∥∂ΩdfFα(Ω, f)[h]− ∂ΩdfFα(Ω, g)[h]

∥∥∥
Cα(T)

≲ ∥f − g∥C1+α(T)∥h∥C1+α(T).

This proves the continuity of ∂ΩdfFα : R×B1+α
r → L(X1+α, Y α).

(iv) For w ∈ T, using the change of variable τ 7→ wτ , the fact that |w| = 1 and the definition of the line integral,
we get

IE(0)(w) =

 
T
log
(
|w − τ |

)
dτ

= w

 
T
log
(
|1− τ |

)
dτ

=
w

2π

ˆ 2π

0

log
(
|1− eiθ|

)
eiθdθ.

Now remark that
|1− eiθ|2 = 2

(
1− cos(θ)

)
= 4 sin2

(
θ
2

)
.

In particular, this latter quantity is even in θ. Hence, we infer

IE(0)(w) =
w

4π

ˆ 2π

0

log
(
sin2

(
θ
2

))
cos(θ)dθ = −w

2
. (3.10)

The last identity is a consequence of the following formula which can be found for instance in [22, Lem. A.3].

1
2π

ˆ 2π

0

log
(
sin2

(
θ
2

) )
cos(nθ)dθ = − 1

n
. (3.11)

Similarly,

ISW(0)(w) =
w

2π

ˆ 2π

0

K0

(
2
α

∣∣ sin ( θ2)∣∣) cos(θ)dθ = wI1
(
1
α

)
K1

(
1
α

)
. (3.12)

The last identity follows from the following identity which can be found in the proof of [51, Lem. 3.2].

1

2π

ˆ 2π

0

K0

(
2
α sin

(
θ
2

))
cos(nθ)dθ = In

(
1
α

)
Kn

(
1
α

)
. (3.13)

Inserting (3.10) and (3.12) into (3.8) and using ww = |w|2 = 1 gives the desired result.
2. We can write

dfFα(Ω, 0)[h](w) = I[h](w) +K[h](w),

with

I[h](w) ≜
(
Ω− 1

2 + I1
(
1
α

)
K1

(
1
α

) )
Im
{
h′(w)

}
,

K[h](w) ≜ Im
{(

Ωh(w) + dfI
E(0)[h](w) + dfI

SW(0)[h](w)
)
w
}
.

One obviously has that I : X1+β → Y β is an isomorphism provided that Ω ̸= 1
2 − I1

(
1
α

)
K1

(
1
α

)
. One readily

has

dfI
E(0)[h](w) =

 
T
h′(τ) log

(
|w − τ |

)
dτ +

 
T

h(w)− h(τ)

2
(
w − τ

) dτ +

 
T

h(w)− h(τ)

2
(
w − τ

) dτ
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and

dfI
SW(0)[h](w) =

 
T
h′(τ)K0

(
1
α |w − τ |

)
dτ

+

 
T
K ′

0

(
1
α |w − τ |

)(h(w)− h(τ)
)(
w − τ

)
2α|w − τ |

dτ

+

 
T
K ′

0

(
1
α |w − τ |

)(h(w)− h(τ)
)(
w − τ

)
2α|w − τ |

dτ.

Now, combining (A.2) and (A.4), we can write

K0(z) = − log(z) + F1(z), K ′
0(z) = −K1(z) = − 1

z + F2(z), F1, F
′
1, F2, F

′
2 bounded at 0.

Gathering the foregoing computations leads to

dfI
E(0)[h](w) + dfI

SW(0)[h](w) =

 
T
h′(τ)F1

(
1
α |w − τ |

)
dτ +

 
T
F2
(
1
α |w − τ |

)(h(w)− h(τ)
)(
w − τ

)
2α|w − τ |

dτ

+

 
T
F2
(
1
α |w − τ |

)(h(w)− h(τ)
)(
w − τ

)
2α|w − τ |

dτ.

This can be written in the form

dfI
E(0)[h](w) + dfI

SW(0)[h](w) = TK1(h′)(w) + TK2(1)(w) + TK2(1)(w),

with

TK(u)(w) ≜
 
T
u(τ)K(w, τ)dτ,

K1(w, τ) ≜ F1
(
1
α |w − τ |

)
,

K2(w, τ) ≜ F2
(
1
α |w − τ |

)(h(w)− h(τ)
)(
w − τ

)
2α|w − τ |

dτ.

Using the boundedness of F1, F
′
1, F2 and F′2 close to zero, we get

|K1(w, τ)| ⩽ C, |∂wK1(w, τ)| ⩽
C

|w − τ |
,

|K2(w, τ)| ⩽ C∥h∥C1+β(T), |∂wK2(w, τ)| ⩽
C∥h∥C1+β(T)

|w − τ |
·

Therefore, applying Lemma B.1, one obtains the continuity of dfI
E(0) + dfI

SW(0) : C1+β(T) → Cδ(T) for any
β ⩽ δ < 1. Coming back to the definition of K, we deduce that for any β ⩽ δ < 1, the operator K : X1+β → Y δ

is continuous (the symmetry property being easily obtained by straightforward calculations and changes of
variables in the integrals). Hence, using the compact embedding of Cδ(T) into Cβ(T) for β < δ < 1, one
deduces that the operator K : X1+β → Y β is compact. Consequently, dfFα(Ω, 0) : X

1+β → Y β is a Fredholm
operator with index 0. Now, we shall compute the Fourier representation of this operator. Fix

h(w) =

∞∑
n=0

anw
n ∈ X1+β .

First observe that

I[h](w) = −
(
Ω− 1

2 + I1
(
1
α

)
K1

(
1
α

) ) ∞∑
n=0

nanen+1(w) (3.14)

and

Im {Ωh(w)w} = −Ω

∞∑
n=0

anen+1(w). (3.15)

The next task is to compute dfI
E(0). One has

 
T
h′(τ) log

(
|w − τ |

)
dτ = w

 
T
h′(ωτ) log

(
|1− τ |

)
dτ

= −
∞∑

n=1

nanω
n

 
T
τn+1 log

(
|1− τ |

)
dτ.
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The last integral can be computed as follows by using (3.11) 
T
τn+1 log

(
|1− τ |

)
dτ = 1

2π

ˆ 2π

0

e−inθ log
(
|1− eiθ|

)
dθ

= 1
4π

ˆ 2π

0

log
(
sin2

(
θ
2

) )
cos(nθ)dθ

= − 1
2n .

Hence,  
T
h′(τ) log

(
|w − τ |

)
dτ =

∞∑
n=1

an

2 w
n.

Similarly, we obtain

 
T

h(w)− h(τ)

2
(
w − τ

) dτ =

∞∑
n=0

an

2

 
T

wn − τn

w − τ
= −

∞∑
n=1

n−1∑
k=0

anw
k+1

2

 
T
τn−kdτ = −

∞∑
n=1

an

2 w
n

 
T

h(w)− h(τ)

2
(
w − τ

) dτ =

∞∑
n=0

an

2

 
T

wn − τn

w − τ
= −

∞∑
n=1

n−1∑
k=0

anw
k+1

2

 
T
τn−kdτ = 0.

Consequently,
dfI

E(0) = 0. (3.16)

Now, let us turn to the calculation of Im {dfISW(0)[h](w)w} . The formula (3.13) gives
 
T
h′(τ)K0

(
1
α |w − τ |

)
dτ = −

∞∑
n=1

nanw
n

 
T
τn+1K0

(
1
α |1− τ |

)
dτ

= −
∞∑

n=1

nanw
n

2π

ˆ 2π

0

K0

(
2
α sin

(
θ
2

))
cos(nθ)dθ

= −
∞∑

n=1

nIn
(
1
α

)
Kn

(
1
α

)
anw

n.

Thus

Im

{
w

 
T
h′(τ)K0

(
1
α |w − τ |

)
dτ

}
=

∞∑
n=1

nIn
(
1
α

)
Kn

(
1
α

)
anen+1(w).

On the other hand 
T
K ′

0

(
1
α |w − τ |

)(h(w)− h(τ)
)(
w − τ

)
+
(
h(w)− h(τ)

)(
w − τ

)
2α|w − τ |

dτ

=

∞∑
n=0

an

(
wn

 
T
K ′

0

(
1
α |1− τ |

)(τn − 1
)(
τ − 1

)
2α|1− τ |

dτ + wn

 
T
K ′

0

(
1
α |1− τ |

)(τn − 1
)(
τ − 1

)
2α|1− τ |

dτ

)
.

One can easily check that the above integrals are real and therefore

Im

{
w

 
T
K ′

0

(
1
α |w − τ |

)(h(w)− h(τ)
)(
w − τ

)
+
(
h(w)− h(τ)

)(
w − τ

)
2α|w − τ |

dτ

}

=

∞∑
n=0

an

( 
T
K ′

0

(
1
α |1− τ |

)(τn − 1
)(
τ − 1

)
−
(
τn − 1

)(
τ − 1

)
2α|1− τ |

dτ

)
en+1(w)

=

∞∑
n=0

an

( 
T
K ′

0

(
1
α |1− τ |

)(τn+1 − τn+1
)
−
(
τn − τn

)
−
(
τ − τ

)
2α|1− τ |

dτ

)
en+1(w).

Now, symmetry arguments together with an integration by parts and (3.13) imply for any k ∈ N∗

 
T
K ′

0

(
1
α |1− τ |

) τk − τk

2α|1− τ |
dτ =

−1

4πα

ˆ 2π

0

K ′
0

(
2
α

∣∣ sin ( θ2) ∣∣) sin(kθ) sin(θ)∣∣ sin ( θ2) ∣∣ dθ

=
−1

2πα

ˆ 2π

0

K ′
0

(
2
α sin

(
θ
2

) )
sin(kθ) cos

(
θ
2

)
dθ

=
k

2π

ˆ 2π

0

K0

(
2
α sin

(
θ
2

) )
cos(kθ)dθ

= kIk
(
1
α

)
Kk

(
1
α

)
.
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Combining the foregoing computations leads to

Im {dfISW(0)[h](w)w} =

∞∑
n=0

an

(
(n+ 1)In+1

(
1
α

)
Kn+1

(
1
α

)
− I1

(
1
α

)
K1

(
1
α

) )
en+1(w). (3.17)

Putting together (3.14), (3.15), (3.16) and (3.17) gives the desired result.

According to Proposition 3.1 the possible values for Ω from which we can hope to bifurcate are

ΩE

n(α) ≜
n−1
2n −

[
I1
(
1
α

)
K1

(
1
α

)
− In

(
1
α

)
Kn

(
1
α

) ]
= ΩE

n −ΩSW

n

(
1
α

)
, n ∈ N∗. (3.18)

We shall now prove the monotonicity of the sequence
(
ΩE

n(α)
)
n∈N∗ . This is given by the following result.

Lemma 3.1. For any α > 0, the sequence
(
ΩE

n(α)
)
n∈N∗ is strictly increasing and tends to ΩE

∞(α), with

ΩE

∞(α) ≜ 1
2 − I1

(
1
α

)
K1

(
1
α

)
.

Moreover,
∀n ∈ N∗, ΩE

n(α) −→
α→0

n−1
2n .

Proof. The convergences are immediate consequences of (A.9) and (A.8). We shall now study the monotonicity.
For n ∈ N∗, we can write

ΩE

n+1(α)−ΩE

n(α) =
(

n
2(n+1) −

n−1
2n

)
−
(
ΩSW

n+1

(
1
α

)
−ΩSW

n

(
1
α

) )
.

We look for the monotonicity of the function φn defined for n ∈ N∗ by

∀x > 0, φn(x) ≜ ΩSW

n+1 (x)−ΩSW

n (x) = In (x)Kn (x)− In+1 (x)Kn+1 (x) .

From the decay property of x 7→ In(x)Kn(x) on (0,∞) for every n ∈ N∗ and the asymptotic expansion (A.7)
we deduce

∀n ∈ N∗, ∀x > 0, In(x)Kn(x) <
1

2n
. (3.19)

Using (A.5), (A.6) and (3.19), we find

φ′
n(x) = I ′n(x)Kn(x) + In(x)K

′
n(x)− I ′n+1(x)Kn+1(x)− In+1(x)K

′
n+1(x)

= 2

(
1

x
+ In(x)K

′
n(x)− I ′n+1(x)Kn+1(x)

)
=

2

x

(
1 +

xK ′
n(x)

Kn(x)
In(x)Kn(x)−

xI ′n+1(x)

In+1(x)
In+1(x)Kn+1(x)

)
<

2

x

(
1−

√
x2 + n2

[
In(x)Kn(x) + In+1(x)Kn+1(x)

])
<

2

x

(
1−

√
x2 + n2

)
< 0.

We deduce that for all n ∈ N∗, φn is strictly decreasing on (0,∞). In addition, from (A.7), we infer

∀n ∈ N∗, lim
x→0

In(x)Kn(x) =
1
2n ,

which implies in turn
∀n ∈ N∗, lim

x→0
ΩSW

n (x) = n−1
2n .

Therefore,
∀n ∈ N∗, ΩE

n+1(α)−ΩE

n(α) >
(

n
2(n+1) −

n−1
2n

)
−
(

n
2(n+1) −

n−1
2n

)
= 0.

This achieves the proof of Lemma 3.1.
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3.3 Construction of local bifurcation branches

We check here the hypothesis of Crandall-Rabinowitz’s Theorem B.1 which immediately imply Theorem 1.1.
Notice that the line of trivial solutions has already been obtained in Lemma 3.1-1-(iv).

Proposition 3.2. Let α > 0, β ∈ (0, 1) and m ∈ N∗. The following assertions hold true.

(i) Fα : R×X1+β
m → Y β

m is well-defined and of class C1.

(ii) The kernel ker
(
dfFα

(
ΩE

m(α), 0
))

is one dimensional and generated by

v0,m : T → C
w 7→ wm−1.

(iii) The range R
(
dfFα

(
ΩE

m(α), 0
))

is closed and of codimension one in Y β
m.

(iv) Transversality condition :

∂ΩdfFα

(
ΩE

m(α), 0
)
[v0,m] ̸∈ R

(
dfFα

(
ΩE

m(α), 0
))
.

Proof. (i) Follows immediately from Proposition 3.1-1.
(ii) It is a direct consequence of Proposition 3.1-2 and Lemma 3.1 since for

h(w) =

∞∑
n=0

anw
nm−1 ∈ X1+β

m ,

we have by (3.9)

dfFα

(
ΩE

m(α), 0
)
[h] =

∞∑
n=1

nman

(
ΩE

nm(α)− ΩE

m(α)
)
enm. (3.20)

(iii) From Proposition 3.1-2, we know that dfFα

(
ΩE

m(α), 0
)
is a Fredholm operator with index zero. Together

with the point (ii), we conclude that the range of dfFα

(
ΩE

m(α), 0
)
is closed with codimension one. We endow

Y β
m with the scalar product

〈
f, g
〉
≜
 
T
f(w)g(w)dw =

∞∑
n=1

fnmgnm, f =

∞∑
n=1

fnmenm, g =

∞∑
n=1

gnmenm.

The continuity of ⟨·, ·⟩ on Y β
m × Y β

m is a direct consequence of Cauchy-Schwarz inequality and the continuous
embedding Cβ(T) ↪→ L2(T). We claim that

R
(
dfFα

(
ΩE

m(α), 0
))

= ⟨em⟩⊥, (3.21)

where the orthogonal is understood in the sense of the scalar product ⟨·, ·⟩. Observe that (3.20) and the point
(i) immediately imply the first inclusion in (3.21). The inverse inclusion is deduced from the fact that the range
is of codimension one.
(iv) For any h ∈ X1+β

m ,

∀w ∈ T, ∂ΩdfFα

(
ΩE

m(α), 0
)
[h](w) = Im

{
h(w)w + h′(w)

}
.

Consequently, (3.21) implies

∂ΩdfFα

(
ΩE

m(α), 0
)
[v0,m] = −mem ̸∈ R

(
dfFα

(
ΩE

m(α), 0
))
.

This ends the proof of Proposition 3.2 and proves Theorem 1.1.

Remark 3.1. Observe that for m = 1, a similar calculation to Proposition 3.1-1-(iv), shows that for Φ(z) =
z + a0, with a0 ∈ R, one has Fα(0,Φ) = 0. By uniqueness of the constructed branch of bifurcation, this latter
corresponds to a translation of the Rankine vortex.

4 Quasi-periodic Euler-α patches

This section is devoted to the proof of Theorem 1.2. It is based on KAM and Nash-Moser techniques in a
similar way to the recent works [14, 40, 42, 51]. First let us introduce the notations and topologies used along
this section.
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4.1 Topologies for functions and operators

This subsection presents the notations and topologies used along this part on the construction of quasi-periodic
vortex patches. First we fix

0 < α0 < α1. (4.1)

The parameter α will live in the interval (α0, α1). More precisely, at the end it will belongs to a Cantor set
contained in this interval. We shall denote

d ∈ N∗ (4.2)

the number of excited frequencies generating the quasi-periodic solutions. Consequently, the frequency vector
ω belongs to Rd. More precisely, at the end ω should be close to the equilibrium frequency vector obtained at
the linear level at the Rankine vortex. Our solutions will be searched in the Sobolev class constructed on L2 in
the variables φ ∈ Td and θ ∈ T. Hence, we decompose any ρ ∈ L2(Td+1,C), in Fourier series as follows

ρ =
∑

(l,j)∈Zd+1

ρl,j el,j , ρl,j ≜
〈
ρ, el,j

〉
L2(Td+1,C),

where (el,j)(l,j)∈Zd×Z denotes the classical Hilbert basis of the complex Hilbert space L2(Td+1,C). Explicitly,
we have

el,j(φ, θ) ≜ ei(l·φ+jθ), ej ≜ e0,j .

The associated Hermitian inner product is

〈
ρ1, ρ2

〉
L2(Td+1,C) ≜

ˆ
Td+1

ρ1(φ, θ)ρ2(φ, θ)dφdθ,

ˆ
Tn

f(x)dx ≜
1

(2π)n

ˆ
[0,2π]n

f(x)dx.

For s ∈ R the complex Sobolev space Hs(Td+1,C) is given by

Hs(Td+1,C) ≜
{
ρ ∈ L2(Td+1,C) s.t. ∥ρ∥2Hs ≜

∑
(l,j)∈Zd+1

⟨l, j⟩2s|ρl,j |2 <∞
}
, ⟨l, j⟩ ≜ max(1, |l|, |j|).

The closed sub-vector space of real valued functions is denoted

Hs ≜ Hs(Td+1,R) ≜
{
ρ ∈ Hs(Td+1,C) s.t. ∀ (φ, θ) ∈ Td+1, ρ(φ, θ) = ρ(φ, θ)

}
=
{
ρ ∈ Hs(Td+1,C) s.t. ∀ (l, j) ∈ Zd+1, ρ−l,−j = ρl,j

}
.

In order to ensure some suitable embeddings, we shall consider the following restrictions on the Sobolev indices.
In particular S is chosen large enough.

S ⩾ s ⩾ s0 >
d+1
2 + q + 2. (4.3)

During the scheme, we shall also keep track of the regularity of our functions and operators with respect to the
parameters µ ≜ (α, ω). Thus, we introduce the parameters

γ ∈ (0, 1), q ∈ N∗ (4.4)

and consider the following weighted spaces

W q,∞,γ(O, Hs) ≜
{
ρ : O → Hs s.t. ∥ρ∥γ,Oq,s <∞

}
, ∥ρ∥γ,Oq,s ≜

∑
α∈Nd+1

|α|⩽q

γ|α| sup
µ∈O

∥∂αµρ(µ, ·)∥Hs−|α| ,

W q,∞,γ(O,C) ≜
{
ρ : O → C s.t. ∥ρ∥γ,Oq <∞

}
, ∥ρ∥γ,Oq ≜

∑
α∈Nd+1

|α|⩽q

γ|α| sup
µ∈O

|∂αµρ(µ)|.

The set O is an open bounded subset of Rd+1 which will be fixed in (4.50). The parameters γ and q will be
fixed in (4.98) and (4.49), respectively. Observe that any ρ ∈W q,∞,γ(O, Hs) decomposes as follows

ρ(µ, φ, θ) =
∑

(l,j)∈Zd+1

ρl,j(µ)el,j(φ, θ).

Some classical properties of the weighted Sobolev norm are gathered in the following lemma. We refer for
instance to [16, 12, 13] for the ideas of their proofs.
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Lemma 4.1. Let (d, γ, q, s0, s) satisfying (4.2), (4.3) and (4.4). Take ρ1, ρ2 ∈ W q,∞,γ(O, Hs). Then the
following assertions hold true.

(i) Space translation invariance : for any η ∈ T, we have τηρ1 : (µ, φ, θ) 7→ ρ1(µ, φ, η + θ) ∈ W q,∞,γ(O, Hs),
and

∥τηρ1∥γ,Oq,s = ∥ρ1∥γ,Oq,s .

(ii) Projectors properties : For all N ∈ N∗ and for all t ∈ R∗
+,

∥ΠNρ1∥γ,Oq,s+t ⩽ N t∥ρ1∥γ,Oq,s ∥Π⊥
Nρ1∥γ,Oq,s ⩽ N−t∥ρ1∥γ,Oq,s+t,

where the projectors are defined by

ΠN

∑
j∈Z

(ρ1)jej

 ≜
∑
j∈Z

|j|⩽N

(ρ1)jej , Π⊥
N ≜ Id−ΠN .

(iii) Law products : ρ1ρ2 ∈W q,∞,γ(O, Hs) and

∥ρ1ρ2∥γ,Oq,s ≲ ∥ρ1∥γ,Oq,s0∥ρ2∥
γ,O
q,s + ∥ρ1∥γ,Oq,s ∥ρ2∥γ,Oq,s0 .

(iv) Composition law : For f ∈ C∞(O × R,R), if there exists M > 0 such that

∥ρ1∥γ,Oq,s , ∥ρ2∥γ,Oq,s ⩽ M,

then f(ρ1)− f(ρ2) ∈W q,∞,γ(O, Hs) with

∥f(ρ1)− f(ρ2)∥γ,Oq,s ⩽ C(s, d, q, f, M)∥ρ1 − ρ2∥γ,Oq,s ,

where we used the notation

∀(µ, φ, θ) ∈ O × Td+1, f(ρ)(µ, φ, θ) ≜ f(µ, ρ(µ, φ, θ)).

We shall now present the operator topology used along this section. In particular, we deal with the Toeplitz
in time operator class. These notions are based on the one introduced in [3, 12, 13, 16]. We consider parameter
dependent operators in the form

T : µ ∈ O 7→ T (µ) ∈ L(Hs(Td+1,C))

which can be identified with an infinite dimensional matrix
(
T l,j
l0,j0

(µ)
)
(l,l0)∈(Zd)2

(j,j0)∈Z2

through their action on the

Hilbert basis
(
el,j
)
(l,j)∈Zd×Z as follows

T (µ)el0,j0 =
∑

(l,j)∈Zd+1

T l,j
l0,j0

(µ)el,j , T l,j
l0,j0

(µ) ≜
〈
T (µ)el0,j0 , el,j

〉
L2(Td+1)

.

More precisely, we shall see such operators acting on W q,∞,γ(O, Hs(Td+1,C)) in the following sense,

ρ ∈W q,∞,γ
(
O, Hs(Td+1,C)

)
, (Tρ)(µ, φ, θ) ≜ T (µ)ρ(µ, φ, θ).

We shall now introduce the Toeplitz operators class. An operator T (µ) is said to be Toeplitz in time iff

T l,j
l0,j0

(µ) = T j
j0
(µ, l − l0), T j

j0
(µ, l) ≜ T l,j

0,j0
(µ).

Its action on a function ρ =
∑

(l0,j0)∈Zd+1

ρl0,j0el0,j0 writes

T (µ)ρ =
∑

(l,l0)∈(Zd)2

(j,j0)∈Z2

T j
j0
(µ, l − l0)ρl0,j0el,j . (4.5)

The Toeplitz topology is given by the following off-diagonal norm,

∥T∥γ,OO-d,q,s ≜
∑

α∈Nd+1

|α|⩽q

γ|α| sup
(b,ω)∈O

∥∂αµ (T )(µ)∥O-d,s−|α|, ∥T∥2O-d,s ≜
∑

(l,m)∈Zd+1

⟨l,m⟩2s sup
j−k=m

|T k
j (l)|2.
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We mention that we will encounter several operators acting only on the variable θ and that can be considered
as φ-dependent operators T (µ, φ) taking the form of integral operators

T (µ, φ)ρ(φ, θ) =

ˆ
T
K(µ, φ, θ, η)ρ(φ, η)dη.

One can easily check that those operators are Toeplitz and therefore they satisfy (4.5). We shall now give some
classical results on the Toeplitz norm. The proofs are very similar to those in [16] concerning pseudo-differential
operators.

Lemma 4.2. Let (d, s0, s, γ, q) satisfying (4.2), (4.3) and (4.4). Let T, T1 and T2 be Toeplitz in time operators.

(i) Composition law :

∥T1T2∥γ,OO-d,q,s ≲ ∥T1∥γ,OO-d,q,s∥T2∥γ,OO-d,q,s0 + ∥T1∥γ,OO-d,q,s0∥T2∥
γ,O
O-d,q,s.

(ii) Link between operators and off-diagonal norms :

∥Tρ∥γ,Oq,s ≲ ∥T∥γ,OO-d,q,s0∥ρ∥
γ,O
q,s + ∥T∥γ,OO-d,q,s∥ρ∥γ,Oq,s0 .

In particular
∥Tρ∥γ,Oq,s ≲ ∥T∥γ,OO-d,q,s∥ρ∥γ,Oq,s .

Now, wee give the following definition inspired for instance from [4, Def. 2.2].

Definition 4.1. We defined the following involutions

(S2ρ)(φ, θ) = ρ(−φ,−θ), (Scρ)(φ, θ) = ρ(φ, θ).

An operator T = T (µ) is said to be

• real iff ∀ρ ∈ L2(Td+1,C), Scρ = ρ⇒ Sc(Tρ) = Tρ.

• reversible iff T ◦ S2 = −S2 ◦ T.

• reversibility preserving iff T ◦ S2 = S2 ◦ T.

We end this subsection by recalling an important lemma whose proof can be found in [51, Lem. 4.4].

Lemma 4.3. Let (d, s0, s, γ, q) satisfy (4.2), (4.3) and (4.4), then for any integral opearator T with a real-valued
kernel K, namely

(Tρ)(µ, φ, θ) =

ˆ
T
ρ(µ, φ, η)K(µ, φ, θ, η)dη, K : (µ, φ, θ, η) 7→ K(µ, φ, θ, η),

the following property holds true.

• If K is even in (φ, θ, η), then T is a real and reversibility preserving Toeplitz in time operator.

• If K is odd in (φ, θ, η), then T is a real and reversible Toeplitz in time operator.

Moreover,

∥T∥γ,OO-d,q,s ≲
ˆ
T
∥K(∗, ·, �, η + �)∥γ,Oq,s+s0dη

and

∥Tρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s0

ˆ
T
∥K(∗, ·, �, η + �)∥γ,Oq,s dη + ∥ρ∥γ,Oq,s

ˆ
T
∥K(∗, ·, �, η + �)∥γ,Oq,s0dη,

where the notation ∗, ·, � denote µ, φ, θ, respectively.
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4.2 Hamiltonian contour dynamics equation and its linearization

Here, we reformulate the contour dynamics equation (1.8) as a Hamiltonian equation on the radial deformation
of the patch motion near the Rankine vortex associated with the unit disc. We also compute the linearization
of this Hamiltonian equation both at the equilibrium and at a general state close to it. Let us consider the
following polar parametrization of the boundary of a patch t 7→ 1Dt close to the Rankine patch 1D.

z(t, θ) ≜ R(t, θ)ei(θ−Ωt), R(t, θ) ≜
√
1 + 2r(t, θ). (4.6)

The radial deformation r is assumed to be of small amplitudes and the angular velocity Ω > 0 is introduced to
avoid the resonance of the first equilibrium frequency as in [40, 51]. Therefore, r satisfies an Hamiltonian PDE
as explained in the following lemma.

Lemma 4.4. The following hold true.

(i) At least for short time T > 0, the radial deformation r in (4.6) is solution of the following equation

∀(t, θ) ∈ [0, T ]× T, ∂tr(t, θ) + Ω∂θr(t, θ)− F E[r](t, θ)− F SW[r](α, t, θ) = 0, (4.7)

where

F E[r](t, θ) ≜
ˆ
T
log
(
Ar(t, θ, η)

)
∂2θη

(
R(t, θ)R(t, η) sin(η − θ)

)
dη, (4.8)

F SW[r](α, t, θ) ≜
ˆ
T
K0

(
1
αAr(t, θ, η)

)
∂2θη

(
R(t, θ)R(t, η) sin(η − θ)

)
dη, (4.9)

Ar(t, θ, η) ≜
∣∣R(t, θ)eiθ −R(t, η)eiη

∣∣ . (4.10)

(ii) The nonlinear and nonlocal transport-type PDE (4.7) can be written in the following Hamiltonian form

∂tr = ∂θ∇H (r), (4.11)

where

H (r) ≜ 1
2

(
E (r)− ΩJ (r)

)
, E (r)(t) ≜ − 1

2π

ˆ
Dt

Ψ(t, z)dA(z), J (r)(t) ≜ 1
2π

ˆ
Dt

|z|2dA(z).

The notation ∇ stands for the L2
θ(T)-gradient associated with the L2

θ(T) normalized inner product

〈
ρ1, ρ2

〉
L2(T) ≜

ˆ
T
ρ1(θ)ρ2(θ)dθ.

Proof. (i) First, from the polar parametrization (4.6), it is easy to check that the left hand-side of (1.8) writes

Im
(
∂tz(t, θ)∂θz(t, θ)

)
= −∂tr(t, θ)− Ω∂θr(t, θ).

Now we study the right hand-side of (1.8). Combining (3.3) and (A.1), we deduce

Im
(
v
(
t, z(t, θ)

)
∂θz(t, θ)

)
= −

ˆ
T
log
(
|z(t, θ)− z(t, η)|

)
Im
(
∂ηz(t, η)∂θz(t, θ)

)
dη

−
ˆ
T
K0

(
1
α |z(t, θ)− z(t, η)|

)
Im
(
∂ηz(t, η)∂θz(t, θ)

)
dη.

We conclude by remarking that

Im
(
∂ηz(t, η)∂θz(t, θ)

)
= ∂2θηIm

(
z(t, η)z(t, θ)

)
= ∂2θη

(
R(t, η)R(t, θ) sin(η − θ)

)
.

(ii) Using polar change of coordinates and (4.6), we obtain

J (r)(t) =

ˆ
T

ˆ R(t,θ)

0

ℓ3dℓdθ = 1
4

ˆ
T

(
1 + 2r(t, θ)

)2
dθ,

leading to
∇J (r) = 1 + 2r and 1

2Ω∂θ∇J (r) = Ω∂θr.
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Now that we have treated the corresponding linear term in (4.7), we can assume Ω = 0. From the complex
notation, we have

∂θΨ(t, z(t, θ)) = ∇Ψ(t, z(t, θ)) · ∂θz(t, θ)

= Im
(
v(t, z(t, θ))∂θz(t, θ)

)
= −F E[r](t, θ)− F SW[r](α, t, θ).

From (1.6), we can write

Ψ(t, z) =

ˆ
Dt

G̃(z, ξ)dA(ξ), G̃(z, ξ) ≜ G(|z − ξ|).

The kernel G̃ satisfies the following symmetry property

G̃(z, ξ) = G̃(ξ, z).

Consequently, we can apply the general [42, Prop. 2.1] giving

∇E (r)(t, θ) = −2Ψ
(
t, z(t, θ)

)
.

This achieves the proof of Lemma 4.4.

We shall now briefly discuss the symplectic framework behind the Hamiltonian equation (4.11). First notice
that one deduces from (4.11) that the space average is preserved along the motion so we may assume it zero
and work in the following phase space

L2
0(T) ≜

{
r =

∑
j∈Z∗

rjej s.t. r−j = rj ,
∑
j∈Z∗

|rj |2 <∞
}
, ej(θ) ≜ eijθ. (4.12)

The symplectic form W on L2
0(T) generated by (4.11) writes

W (r, r̃) ≜
ˆ
T
∂−1
θ r(θ)r̃(θ)dθ, ∂−1

θ r ≜
∑
j∈Z∗

rj
ij ej . (4.13)

The associated Hamiltonian vector-field XH is defined by

dH (r)[ρ] = W (XH (r), ρ), XH (r) ≜ ∂θ∇H (r).

We shall also present the reversibility property of the Hamiltonian H . For that purpose we introduce the
following involution on L2

0(T)
(S r)(θ) ≜ r(−θ), S 2 = Id. (4.14)

Then changes of variables give

S ◦ F E = −F E ◦ S , S ◦ F SW = −F SW ◦ S

implying in turn
H ◦ S = H , XH ◦ S = −S ◦XH .

Now, in view of applying a Nash-Moser scheme, we shall compute the linearized operator both at the equilibrium
and at a general state close to it. It is proved in [42, Lem. 3.1 and 3.2] that

−drF E(r)[ρ] = −∂θ
(
V E

r ρ
)
+ ∂θL

E

r (ρ), (4.15)

with

V E

r (t, θ) ≜ 1
R(t,θ)

ˆ
T
log
(
Ar(t, θ, η)

)
∂η
(
R(t, η) sin(η − θ)

)
dη, (4.16)

LE

r (ρ)(t, θ) ≜
ˆ
T
ρ(t, η) log (Ar(t, θ, η)) dη (4.17)

and
−drF E(0)[ρ] = 1

2∂θρ+ ∂θK ∗ ρ = i
∑
j∈Z

jΩE

|j|ρjej , K(θ) ≜ 1
2 log

(
sin2

(
θ
2

))
.
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We recall that Ar and R are defined by (4.10) and (4.6), respectively. In addition, it has been proved in [51,
Lem. 3.1 and 3.2] that

drF
SW(r)[ρ] = ∂θ

(
V SW

r ρ
)
− ∂θL

SW

r (ρ), (4.18)

with

V SW

r (α, t, θ) ≜ 1
R(t,θ)

ˆ
T
K0

(
1
αAr(t, θ, η)

)
∂η
(
R(t, η) sin(η − θ)

)
dη, (4.19)

LSW

r (ρ)(α, t, θ) ≜
ˆ
T
ρ(t, η)K0

(
1
αAr(t, θ, η)

)
dη (4.20)

and

drF
SW(0)[ρ] = I1

(
1
α

)
K1

(
1
α

)
∂θρ− ∂θQα ∗ ρ = i

∑
j∈Z

jΩSW

|j|
(
1
α

)
ρjej , Qα(θ) ≜ K0

(
2
α

∣∣sin ( θ2)∣∣) .
Gathering the previous results leads to the following lemma giving the general expression of the linearized equa-
tion and stating that the equilibrium is given by a Fourier multiplier associated with an integrable Hamiltonian
system.

Lemma 4.5. The following assertions hold true.

(i) The linearization of (4.11) at a general state r writes

∂tρ = −∂θ
(
Vrρ+ Lr(ρ)

)
, (4.21)

where Vr and Lr are respectively defined by

Vr(α, t, θ) ≜ Ω+ V SW

r (α, t, θ)− V E

r (t, θ), Lr ≜ LE

r + LSW

r . (4.22)

In addition, we have the following symmetry property

r(−t,−θ) = r(t, θ) ⇒ Vr(α,−t,−θ) = Vr(α, t, θ). (4.23)

(ii) (a) At r = 0, the equation (4.21) becomes

∂tρ = ∂θL(α)ρ = ∂θ∇HL(ρ), (4.24)

where L(α) is the self-adjoint operator given by

L(α) ≜ −V0(α)−Kα ∗ ·, V0(α) ≜ Ω+
1

2
− I1

(
1
α

)
K1

(
1
α

)
, Kα ≜ K −Qα. (4.25)

The equation (4.24) is generated by the quadratic Hamiltonian

HL(ρ) ≜ 1
2

〈
L(α)ρ, ρ

〉
L2(T). (4.26)

(b) In Fourier expansion, the solutions of (4.24) take the form

ρ(t, θ) =
∑
j∈Z∗

ρj(0)e
i(jθ−ΩE

j (α)t),

where for all j ∈ Z∗,

ΩE

j (α) ≜ j
[
Ω+ |j|−1

2|j| −
[
I1
(
1
α

)
K1

(
1
α

)
− I|j|

(
1
α

)
K|j|

(
1
α

) ]]
= j
[
Ω+ΩE

|j|(α)
]
, (4.27)

with ΩE

j (α) are the frequencies obtained in the periodic case and defined in (1.12). The operator L(α)
and the Hamiltonian HL also write

L(α)ρ = −
∑
j∈Z∗

ΩE
j (α)

j ρjej and HLρ = −
∑
j∈Z∗

ΩE
j (α)

2j |ρj |2. (4.28)
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4.3 Transversality and linear quasi-periodic solutions

The aim of this section is to find quasi-periodic solutions for the linearized equation (4.24), which is the basis
for expecting to get them at the nonlinear level. The result reads as follows

Proposition 4.1. Let (α0, α1, d) as in (4.1)-(4.2). Take S ⊂ N∗ with |S| = d. Then, there exists a Cantor-like
set

CEq ⊂ [α0, α1], |CEq| = α1 − α0

such that for any α ∈ CEq, every function in the form

ρ(t, θ) =
∑
j∈S

ρj cos
(
jθ − ΩE

j (α)t
)
, ρj ∈ R∗

is a time quasi-periodic reversible solution to (4.24) with frequency vector

ωEq(α) =
(
ΩE

j (α)
)
j∈S . (4.29)

The proof of this proposition is very similar to [51, Prop. 3.1] so we refer the reader to the corresponding
paper. We mention that in the proof, to measure the Cantor set CEq, we make appeal to the following Rüssmann
Lemma which can be found in [67, Thm. 17.1].

Lemma 4.6. Let q0 ∈ N∗, a, b ∈ R with a < b and m, M ∈ (0,∞). Let f ∈ Cq0([a, b],R) such that

inf
x∈[a,b]

max
q∈J0,q0K

∣∣f (q)(x)∣∣ ⩾ m. (4.30)

Then, there exists C = C(a, b, q0, ∥f∥Cq0 ([a,b],R)) > 0 such that

∣∣∣ {x ∈ [a, b] s.t. |f(x)| ⩽ M}
∣∣∣ ⩽ C

M
1
q0

m
1+ 1

q0

·

To apply the previous lemma, we shall check the transversality condition (4.30) for the equilibrium frequency
vector ωEq in (4.29). It is proved in Lemma 4.9-(i). Notice that the measure of the final Cantor set in
Section 4.6 generating quasi-periodic solution for the nonlinear model requires transversality conditions for
the perturbed frequency vector. These latter are obtained by perturbative arguments from the one for the
equilibrium frequency vector stated in Lemma 4.9 and which are themselves deduced from the non-degeneracy
of the unperturbed frequency vector proved in Lemma 4.8. First we start by giving some properties of the
frequencies (4.27).

Lemma 4.7. The following properties hold true.

(i) ∀α > 0, ΩE
j (α) ∼

j→+∞
V0(α)j, with V0(α) as in (4.25).

(ii) For all α > 0, the sequence (ΩE
j (α))j∈N∗ is strictly increasing.

(iii) For any j ∈ Z∗, we have

∀α > 0,
∣∣∣ΩE

j (α)
∣∣∣ ⩾ Ω|j|.

(iv) For any j, j′ ∈ Z∗, we have

∀α > 0,
∣∣∣ΩE

j (α)− ΩE

j′(α)
∣∣∣ ⩾ Ω|j − j′|.

(v) Given 0 < α0 < α1 and q0 ∈ N, there exists C0 > 0 such that

∀j, j0 ∈ Z∗, max
q∈J0,q0K

sup
α∈[α0,α1]

∣∣∣∂qb(ΩE

j (α)− ΩE

j0(α)
)∣∣∣ ⩽ C0|j − j0|.

Proof. (i) and (ii) follow immediately from Lemma 3.1 and (4.27).
(iii) Due to the symmetry (4.27), it sufficies to study the case j ∈ N∗. From Lemma 3.1, we get

∀α > 0, ΩE

j (α) ⩾ 0.

Consequently,
∀α > 0, ΩE

j (α) ⩾ jΩ.
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(iv) Due to the symmetry (4.27), it suffices to prove that

∀α > 0, ∀(j, j′) ∈ (N∗)2,
∣∣∣ΩE

j (α)± ΩE

j′(α)
∣∣∣ ⩾ Ω|j ± j′|.

The point (ii) allows us to restrict the discussion to the case j ⩾ j′. We can write

ΩE

j (α)± ΩE

j′(α) = Ω(j ± j′) + jΩE

j (α)± j′ΩE

j′(α).

In view of Lemma 3.1, we obtain
jΩE

j (α)± j′ΩE

j′(α) ⩾ 0.

Hence
ΩE

j (α)± ΩE

j′(α) ⩾ Ω(j ± j′).

(v) As before, by symmetry, it sufficies to prove that

∀(j, j0) ∈ (N∗)2, ∀α ∈ [α0, α1], ∀q ∈ J0, q0K,
∣∣∣∂qα(ΩE

j (α)± ΩE

j0(α)
)∣∣∣ ⩽ C0|j ± j0|.

Let us start with the difference. We can write form (4.27)

ΩE

j (α)− ΩE

j0(α) = Ω(j − j0) +
j − j0

2
+ ΩSW

j0

(
1
α

)
− ΩSW

j

(
1
α

)
, ΩSW

j (λ) ≜ jΩSW

|j| (λ).

Now it has been proved in [51, Lem. 3.3-(vi)] that for some 0 < λ0 < λ1, there exists C > 0 such that

∀(j, j0) ∈ (N∗)2, ∀λ ∈ [λ0, λ1], ∀q ∈ J0, q0K,
∣∣∣∂qλ(ΩSW

j (λ)± ΩSW

j0 (λ)
)∣∣∣ ⩽ C|j ± j0|. (4.31)

We warn the reader about the difference of definitions of the frequencies ΩSW
j between this article and [51] (with

the Ω missing). But this has no impact here. Hence, we conclude by the triangle inequality that for some
C0 > 0

∀(j, j0) ∈ (N∗)2, ∀α ∈ [α0, α1], ∀q ∈ J0, q0K,
∣∣∣∂qα(ΩE

j (α)− ΩE

j0(α)
)∣∣∣ ⩽ C0|j − j0|.

We now trun to the additional case. We can write

0 < ΩE

j (α) + ΩE

j0(α) = Ω(j + j0) +
(
j j−1

2j + j0
j0−1
2j0

)
− ΩSW

j0

(
1
α

)
− ΩSW

j

(
1
α

)
.

Notice that
∀j ∈ N∗, j−1

2j ⩽ 1
2 and ΩSW

j

(
1
α

)
> 0.

Thus,
0 < ΩE

j (α) + ΩE

j0(α) ⩽
(
Ω+ 1

2

)
(j + j0).

Combined with (4.31), this ends the proof of Lemma 4.7.

For a fixed finite set of Fourier modes

S = {j1, . . . , jd} ⊂ N∗, j1 < . . . < jd, d ∈ N∗, (4.32)

we define the equilibrium frequency vector

ωEq(α) =
(
ΩE

j (α)
)
j∈S. (4.33)

Then, in view of the measure of the final Cantor set, we may check the Rüssmann conditions for the unperturped
frequency vector (4.33). They are obtained by using the following non-degeneracy conditions.

Lemma 4.8. Let (α0, α1) as in (4.1). The equilibrium frequency vector ωEq and the vector-valued functions
(ωEq, V0) and (ωEq, V0, 1) are non-degenerate on [α0, α1], namely the curves

α ∈ [α0, α1] 7→ ωEq(α),
α ∈ [α0, α1] 7→ (ωEq(α), V0(α)),
α ∈ [α0, α1] 7→ (ωEq(α), V0(α), 1)

are not contained in an hyperplane of Rd, Rd+1 and Rd+2, respectively.
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Proof. ▶ Assume that there exists (c1, . . . , cd) ∈ Rd such that

∀α ∈ [α0, α1],

d∑
k=1

ckΩ
E

jk
(α) = 0,

which is equivalent to

∀α ∈ [α0, α1],

d∑
k=1

ckjk

(
Ω+ jk−1

2jk

)
=

d∑
k=1

ckΩ
SW

jk

(
1
α

)
. (4.34)

By analyticity of the product InKn on {z ∈ C s.t. Re(z) > 0} for any n ∈ N∗, then by continuation principle,
the previous identity is still true for α > 0. Taking the limit α→ 0 in the previous relation implies from (A.8)

d∑
k=1

ckjk

(
Ω+ jk−1

2jk

)
= 0.

The equation (4.34) is reduced to
d∑

k=1

ckΩ
SW

jk

(
1
α

)
= 0.

Then, proceeding as in [51, Lem. 3.4], the asymptotic expansion of large argument for IjKj provides an
invertible Vandermonde system leading to ∀k ∈ J1, dK, ck = 0.
▶ Assume that there exists (c1, . . . , cd, cd+1) ∈ Rd+1 (resp. (c1, . . . , cd, cd+1, cd+2) ∈ Rd+2) such that

∀α ∈ [α0, α1], (resp. cd+2+) cd+1V0(α) +

d∑
k=1

ckΩ
E

jk
(α) = 0,

which is equivalent to the fact that for any α ∈ [α0, α1],

(resp. cd+2+) cd+1

(
Ω+ 1

2

)
+

d∑
k=1

ckjk

(
Ω+ jk−1

2jk

)
= cd+1I1

(
1
α

)
K1

(
1
α

)
+

d∑
k=1

ckΩ
SW

jk

(
1
α

)
. (4.35)

As in the previous point, this identity can be extended to (0,∞) and taking the limit α→ 0, one gets by (A.8)

(resp. cd+2+) cd+1

(
Ω+ 1

2

)
+

d∑
k=1

ckjk

(
Ω+ jk−1

2jk

)
= 0.

Inserting this information into (4.35) yields

∀α > 0, cd+1I1
(
1
α

)
K1

(
1
α

)
+

d∑
k=1

ckΩ
SW

jk

(
1
α

)
= 0.

This equation has also been studied in [51, Lem. 3.4] leading to c1 = . . . = cd = cd+1 = 0 (resp. supplemented
by cd+2 = 0). This achieves the proof of Lemma 4.8.

Now we shall prove the transversality conditions for the equilibrium frequency vector.

Lemma 4.9. [Transversality] Let (α0, α1) as in (4.1). Then, there exist q0 ∈ N and ρ0 > 0 such that the
following results hold true. Recall that ωEq and ΩE

j are defined in (4.33) and (4.27) respectively.

(i) For any l ∈ Zd \ {0}, we have

inf
α∈[α0,α1]

max
q∈J0,q0K

∣∣∣∂qαωEq(α) · l
∣∣∣ ⩾ ρ0⟨l⟩.

(ii) For any (l, j) ∈ Zd × (N∗ \ S)

inf
α∈[α0,α1]

max
q∈J0,q0K

∣∣∣∂qα(ωEq(α) · l ± jV0(α)
)∣∣∣ ⩾ ρ0⟨l⟩.

(iii) For any (l, j) ∈ Zd × (N∗ \ S)

inf
α∈[α0,α1]

max
q∈J0,q0K

∣∣∣∂qα(ωEq(α) · l ± ΩE

j (α)
)∣∣∣ ⩾ ρ0⟨l⟩.
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(iv) For any l ∈ Zd, j, j′ ∈ N∗ \ S with (l, j) ̸= (0, j′), we have

inf
α∈[α0,α1]

max
q∈J0,q0K

∣∣∣∂qα(ωEq(α) · l +ΩE

j (α)± ΩE

j′(α)
)∣∣∣ ⩾ ρ0⟨l⟩.

Proof. We shall prove the point (iv) which is the most difficult one. The arguments are similar in the other cases
using the corresponding non-degeneracy conditions provided by Lemma 4.8. Fix some l ∈ Zd and j, j′ ∈ N∗ \ S
with (l, j) ̸= (0, j′). If for some c0 > 0

|j ± j′| ⩾ c0⟨l⟩,

then applying the triangle inequality together with Lemma 4.7-(iv), we get∣∣∣ωEq(α) · l +ΩE

j (α)± ΩE

j′(α)
∣∣∣ ⩾ ∣∣∣ΩE

j (α)± ΩE

j′(α)
∣∣∣− |ωEq(α) · l| ⩾ Ω|j ± j′| − C|l| ⩾ ⟨l⟩.

Therefore it remains to check the proof for indices satisfying

|j ± j′| < c0⟨l⟩, l ∈ Zd \ {0}, j, j′ ∈ N∗ \ S. (4.36)

We assume in view of a contradiction that for all m ∈ N, there exist real numbers lm ∈ Zd \{0}, jm, j′m ∈ N∗ \S
satisfying (4.36) and αm ∈ [α0, α1] such that

max
q∈J0,mK

∣∣∣∣∣∂qα
(
ωEq(α) · lm

|lm| +
ΩE

jm
(α)±ΩE

j′m
(α)

|lm|

)
|α=αm

∣∣∣∣∣ < 1
m+1 .

This implies that

∀q ∈ N, ∀m ⩾ q,

∣∣∣∣∣∂qα
(
ωEq(α) · lm

|lm| +
ΩE

jm
(α)±ΩE

j′m
(α)

|lm|

)
|α=αm

∣∣∣∣∣ < 1
m+1 · (4.37)

By compactness and (4.36), up to considering a subsequence, we can assume that

lim
m→∞

lm
|lm| = c̄ ̸= 0, lim

m→∞
jm±j′m
|lm| = d̄, lim

m→∞
αm = ᾱ. (4.38)

Now we shall study separetely the cases whether the sequence (lm)m is bounded or not.
▶ Here we assume that the sequence (lm)m is bounded. Then, by compactness, we can assume, up to an
extraction, that we have the following convergence

lim
m→∞

lm = l̄ ̸= 0.

Now according to (4.36) we have two sub-cases to discuss depending whether the sequences (jm)m and (j′m)m
are simultaneously bounded or unbounded.
• We first study the case where the sequences (jm)m and (j′m)m are bounded. Observe that the is the only case
to consider if we work with the sign ” + ” in (4.36). Since they are sequences of integers, then by compactness
we may assume, up to considering an extraction, that they are constant, namely

∃ j̄, j̄′ ∈ N∗ \ S s.t. ∀m ∈ N, jm = j̄ and j′m = j̄′.

Hence taking the limit as m→ ∞ in (4.37), we obtain

∀q ∈ N, ∂qα

(
ωEq(α) · l̄ +ΩE

j̄ (α)± ΩE

j̄′(α)
)
|α=α

= 0.

Thus, the analytic function α 7→ ωEq(α) · l̄ + ΩE

j̄
(α) ± ΩE

j̄′
(α) is identically zero which enters in contradiction

with Lemma 4.8 up to replacing ωEq by (ωEq,Ω
E

j̄
) or (ωEq,Ω

E

j̄
,ΩE

j̄′
).

• Now we study the case where (jm)m and (j′m)m are both unbounded and without loss of generality we can
assume that

lim
m→∞

jm = lim
m→∞

j′m = ∞. (4.39)

Notice that here this case only concerns the situation with a sign ”−” in (4.36). Nevertheless, for later purposes,
we may treat both sign situations. From the expression (4.27) we can write

ΩE

jm(α)± ΩE

j′m
(α) =(jm ± j′m)V0(α)−

(
1
2 ± 1

2

)
+ (jm ± j′m)(IjmKjm)

(
1
α

)
± j′m

(
(Ij′mKj′m

)
(
1
α

)
− (IjmKjm)

(
1
α

))
,
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with V0(α) as in (4.25). It has been proved in [51, Lem. 3.5] that for any q ∈ N, and for any 0 < λ0 < λ1,

lim
m→∞

sup
λ∈[λ0,λ1]

∣∣∣j′m ∂qλ(IjmKjm − Ij′mKj′m
)(λ)

∣∣∣ = 0, lim
m→∞

sup
λ∈[λ0,λ1]

∣∣∣∂qλ(IjmKjm)(λ)
∣∣∣ = 0. (4.40)

Therefore (4.38) and (4.40) imply for any q ∈ N,

lim
m→∞

|lm|−1∂qα

(
ΩE

jm(α)± ΩE

j′m
(α)
)
|α=αm

= ∂qα

(
d̄V0(α) + |l̄|−1

(
1
2 ± 1

2

))
|α=α

.

By taking the limit as m→ ∞ in (4.37), we find

∀q ∈ N, ∂qα

(
ωEq(α) · c̄+ d̄V0(α) + |l̄|−1

(
1
2 ± 1

2

))
|α=α

= 0.

Thus, the analytic function α 7→ ωEq(α) · c̄ + d̄V0(α) + |l̄|−1
(
1
2 ± 1

2

)
with (c̄, d̄) ̸= 0 and

(
c̄, d̄, |l̄|−1

)
̸= 0 is

vanishing which contradicts Lemma 4.8.
▶ Now we treat the case where the sequence (lm)m is unbounded. Up to an extraction we can assume that

lim
m→∞

|lm| = ∞.

We shall distinguish three sub-cases.
• We first assume that the sequences (jm)m and (j′m)m are bounded. Hence we have convergences of the type
(4.39). Then taking the limit in (4.37) yields,

∀q ∈ N, ∂qαωEq(ᾱ) · c̄ = 0.

which leads to a contradiction as before.
• The case where the sequences (jm)m and (j′m)m are both unbounded is similar to what has been done
previously.
• Now we assume that the sequence (jm)m is unbounded and (j′m)m is bounded (the symmetric case is similar).
Without loss of generality we can assume that

lim
m→∞

jm = ∞, j′m = j.

One obtains from (4.40) and (4.38)

∀q ∈ N, lim
m→∞

|lm|−1∂qα

(
ΩE

jm(α)± ΩE

j′m
(α)
)
|α=αm

= d̄∂qαV0(ᾱ).

Consequently, taking the limit m→ ∞ in (4.37) gives

∀q ∈ N, ∂qα

(
ωEq(α) · c̄+ d̄V0(α)

)
α=α

= 0.

Thus, the analytic function α 7→ ωEq(α) · c̄+ d̄V0(α) is identically zero with (c̄, d̄) ̸= 0 which contradicts Lemma
4.8. This completes the proof of Lemma 4.9.

4.4 The functional of interest and associated tame estimates

In this subsection, we shall reformulate the problem in terms of embedded tori through the introduction of
action-angle variables. This leads to look for the zeros of a nonlinear functional. Observe that the equation
(4.11) can be seen as a quasilinear perturbation of its linearization at the equilibrium state, namely

∂tr = ∂θL(α)(r) +XP(r), XP(r) ≜ 1
2∂θr + ∂θKα ∗ r + F E[r] + F SW[r], (4.41)

with F E, F SW and L(α) as in (4.8), (4.9) and (4.25). The smallness property is encoded by the introduction of
a small parameter ε. Then we consider the rescalling r 7→ εr with r bounded. Therefore (4.11) becomes

∂tr = ∂θL(α)(r) + εXPε(r), XPε(r) ≜ ε−2XP(εr). (4.42)

Remark that (4.42) can be written in the Hamiltonian form

∂tr = ∂θ∇Hε(r), Hε(r) ≜ ε−2H (εr) ≜ HL(r) + εPε(r),
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with HL as in (4.26) and εPε(r) containing the higher order terms more than cubic. We shall now reformulate
the problem in terms of embedded tori. For that purpose, we introduce the action-angle variables. This is done
in the following way. Introducing the symmetrized tangential sets S and S0 associated to S in (4.32)

S ≜ S ∪ (−S) = {±j, j ∈ S}, S0 ≜ S ∪ {0},

we can split the phase space L2
0(T) into tangential and normal subspaces

L2
0(T) = LS

⊥
⊕ L2

⊥, LS ≜
{
v =

∑
j∈S

vjej , v−j = vj

}
, L2

⊥ ≜
{
z =

∑
j∈Z\S0

zjej , z−j = zj

}
. (4.43)

Therefore, we can decompose any r ∈ L2
0(T) as follows

r = v + z, v = ΠS0r ≜
∑
j∈S

rjej ∈ LS, z = Π⊥
S0r ≜

∑
j∈Z\S0

rjej ∈ L2
⊥.

We consider small amplitudes
(aj)j∈S ∈ (R∗

+)
d, a−j = aj

and introduce the action-angle variables

(I, ϑ) =
((
Ij
)
j∈S,

(
ϑj
)
j∈S

)
, I−j = Ij ∈ R, ϑ−j = −ϑj ∈ T

such that on the tangential set LS we have

∀r ∈ LS, r =
∑
j∈S

√
a2j + |j|Ij eiϑjej ≜ v(ϑ, I). (4.44)

This defines an application
A : Td × Rd × L2

⊥(T) → L2
0(T)

(ϑ, I, z) 7→ r = v(ϑ, I) + z

which is symplectic with respect to the symplectic structure W defined in (4.13). We refer for instance to [42]
for a proof of this result. In these coordinates the new Hamiltonian system is generated by the Hamiltonian

Hε ≜ Hε ◦ A = N + εPε, N ≜ −ωEq(α) · I +
1

2

〈
L(α) z, z

〉
L2(T), Pε ≜ Pε ◦ A. (4.45)

We look for an embedded invariant torus

i : Td → Td × Rd × L2
⊥

φ 7→ i(φ) ≜ (ϑ(φ), I(φ), z(φ))

of the Hamiltonian vector field
XHε

≜ (∂IHε,−∂ϑHε,Π
⊥
S0∂θ∇zHε) (4.46)

filled by quasi-periodic solutions with Diophantine frequency vector ω. Note that for value ε = 0, the Hamilto-
nian system

ω · ∂φi(φ) = XH0
(i(φ))

possesses, for any value of the parameter α ∈ (α0, α1), the flat invariant torus (φ, 0, 0). Similarly to [11, 40, 42,
51], we shall introduce a free parameter κ ∈ Rd to deal with zero φ-average conditions in the construction of
an almost approximate right inverse for the linearized operator and therefore consider the following family of
modified Hamiltonians,

H κ
ε ≜ Nκ + εPε, Nκ ≜ κ · I + 1

2

〈
L(α) z, z

〉
L2(T). (4.47)

We mention that the original problem is recovered by taking κ = −ωEq(α). Now we are interested in finding
non-trivial zeros of the nonlinear functional

F (i, κ, (α, ω), ε) ≜ ω · ∂φi(φ)−XH κ
ε
(i(φ)) =

 ω · ∂φϑ(φ)− κ− ε∂IPε(i(φ))
ω · ∂φI(φ) + ε∂ϑPε(i(φ))

ω · ∂φz(φ)− ∂θ
[
L(α)z(φ) + ε∇zPε

(
i(φ)

)]
 . (4.48)

We point out that we can easily check that the Hamiltonian H κ
ε is reversible in the sense of the Definition 4.1,

that is,
H κ

ε ◦ S = H κ
ε , S(ϑ, I, z) ≜ (−ϑ, I,S z),
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with S as in (4.14). Thus, we look for reversible tori solutions of F (i, κ, (α, ω), ε) = 0, that is satisfying

Si(φ) = i(−φ), i.e. ϑ(−φ) = −ϑ(φ), I(−φ) = I(φ), z(−φ) = (S z)(φ).

Now we define the periodic component I of the torus i together with its Sobolev norm by

I(φ) ≜ i(φ)− (φ, 0, 0) = (Θ(φ), I(φ), z(φ)), Θ(φ) ≜ ϑ(φ)− φ, ∥I∥γ,Oq,s ≜ ∥Θ∥γ,Oq,s + ∥I∥γ,Oq,s + ∥z∥γ,Oq,s .

The norm ∥ · ∥γ,Oq,s is defined in Section 4.1. We shall fix q as follows

q ≜ q0 + 1, (4.49)

with the q0 appearing in Lemma 4.9. This particular choice is relevant in the final subsection when checking
the perturbed Rüssmann conditions. We also define the set of parameters O as follows

O ≜ (α0, α1)×B(0, R0) ⊂ Rd+1, (4.50)

where the open ball B(0, R0) ⊂ Rd with R0 > 0 is chosen such that

ωEq

(
(α0, α1)

)
⊂ B

(
0, R0

2

)
.

This is well-defined by continuity of the application ωEq in (4.33). This particular structure is chosen so that
the perturbed frequency vector in Section 4.6 is included in the corresponding component of O in order to check
trivial inclusions. We shall now prove tame estimates for XP .

Lemma 4.10. Let (γ, s0, s, q) satisfying (4.4), (4.3) and (4.49). There exists ε0 ∈ (0, 1] such that if

∥r∥γ,Oq,s0+2 ⩽ ε0,

then we have the following estimates for the vector field XP in (4.41)

(i) ∥XP(r)∥γ,Oq,s ≲ ∥r∥γ,Oq,s+2∥r∥
γ,O
q,s0+1.

(ii) ∥drXP(r)[ρ]∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+2∥r∥
γ,O
q,s0+1 + ∥r∥γ,Oq,s+2∥ρ∥

γ,O
q,s0+1.

(iii) ∥d2rXP(r)[ρ1, ρ2]∥γ,Oq,s ≲ ∥ρ1∥γ,Oq,s0+1∥ρ2∥
γ,O
q,s+2 + ∥ρ1∥γ,Oq,s+2∥ρ2∥

γ,O
q,s0+1 + ∥r∥γ,Oq,s+2∥ρ1∥

γ,O
q,s0+1∥ρ2∥

γ,O
q,s0+1.

Proof. It suffices to prove the estimate (iii). Indeed, the estimates (i) and (ii) are consequences of (iii) by a
direct application of Taylor formula since XP(0) = 0 and drXP(0) = 0. Recall from (4.15) and (4.18) that

drXH (r)[ρ] = drF
E(r)[ρ] + drF

SW(r)[ρ]

= ∂θ
(
V E

r ρ
)
+ ∂θL

E

r (ρ)− ∂θ
(
V SW

r ρ
)
− ∂θL

SW

r (ρ).

Differentiating the last expression with respect to r yields

d2rXP(r)[ρ1, ρ2] = ∂θ
(
(drV

E

r [ρ2])ρ1
)
− ∂θ(drL

E

r [ρ2]ρ1) + ∂θ
(
(drV

SW

r [ρ2])ρ1
)
− ∂θ(drL

SW

r [ρ2]ρ1).

But it has been proved in [42, Lem. 5.2] and [51, Lem. 5.2] that each term in the right hand-side of the previous
equality satisfy an estimate as in (iii) in the statement of this lemma which concludes the proof of this latter.

Consequently proceeding as for [51, Lem. 5.3], the previous lemma implies the following one stating tame
estimates for the perturbed Hamiltonian vector field in the action-angle-normal variables.

Lemma 4.11. Let (γ, s0, s, q) satisfy (4.4), (4.3) and (4.49). There exists ε0 ∈ (0, 1) such that if

ε ⩽ ε0, ∥I∥γ,Oq,s0+2 ⩽ 1,

then the perturbed Hamiltonian vector field in the new variables

XPε
= (∂IPε,−∂ϑPε,Π

⊥
S ∂θ∇zPε)

defined through (4.45) and (4.46) satisfies the following tame estimates

(i) ∥XPε
(i)∥γ,Oq,s ≲ 1 + ∥I∥γ,Oq,s+2.

(ii)
∥∥diXPε

(i)[ î ]
∥∥γ,O
q,s

≲ ∥ î ∥γ,Oq,s+2 + ∥I∥γ,Oq,s+2∥ î ∥
γ,O
q,s0+1.

(iii)
∥∥d2iXPε(i)[ î, î ]

∥∥γ,O
q,s

≲ ∥ î ∥γ,Oq,s+2∥ î ∥
γ,O
q,s0+1 + ∥I∥γ,Oq,s+2

(
∥ î ∥γ,Oq,s0+1

)2
.
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4.5 Almost approximate right inverse

The aim of this section is to construct for any vector-valued function κ0 : O → Rd and any reversible torus
i0 = (ϑ0, I0, z0) close to the flat one an almost approximate right inverse for the linearized operator

d(i,κ)F (i0, κ0)[̂ı , κ̂] = ω · ∂φ ı̂− diXH
κ0
ε

(i0(φ))[̂ı]− (κ̂, 0, 0) (4.51)

associated with the functional F defined in (4.48). For this purpose, we use the Berti-Bolle theory developed in
[11] and [40, Sec. 6]. Namely, we can find a linear diffeomorphism of the toroidal phase space Td×Rd×L2

⊥ such
that the conjugation of (4.51) by this application is a triangular system in the action-angles-normal variables up
to error terms either vanishing at an exact solution or small fast decaying. The key point to solve the triangular
system is that it is sufficient to almost invert the linearized operator in the normal directions. According to the
computations done in [11, 40], this latter admits the following form

L⊥ ≜ L⊥(i0) ≜ Π⊥
S0

(
ω · ∂φ − ∂θ ∂z∇zH

κ0
ε (i0(φ))− ε∂θR(φ)

)
Π⊥

S0 , (4.52)

where H κ0
ε is as in (4.47) and R(φ) is a remainder operator coming from a coupling with the tangential part

and given by

R(φ) ≜ L⊤
2 (φ)∂I∇IPε(i0(φ))L2(φ) + L⊤

2 (φ)∂z∇IPε(i0(φ)) + ∂I∇zPε(i0(φ))L2(φ),

with Pε as in (4.45) and

L2 : Rd → L2
⊥, L2(ϕ) ≜ −[(∂ϑz̃0)(ϑ0(ϕ))]

⊤∂−1
θ , z̃0(ϑ) ≜ z0(ϑ

−1
0 (ϑ)).

We used the following definition by duality for the transposed operator L⊤
2 : L2

⊥ → Rd

∀u ∈ L2
⊥ , ∀ v ∈ Rd,

〈
L⊤
2 (φ)u, v

〉
Rd =

〈
u, L2(φ)v

〉
L2(Td)

.

Furthermore, we can have a more explicit decomposition of the operator L⊥. The result is described in the
following proposition whose proof is similar to [51, Prop. 6.1] or [42, Prop. 6.1].

Proposition 4.2. Let (d, γ, s0, q) satisfy (4.2), (4.4), (4.3) and (4.49). Then, the operator L⊥ in (4.52) writes

L⊥ = Π⊥
S0

(
Lεr − ε∂θR

)
Π⊥

S0 , (4.53)

where the operator Lεr is defined as follows with Vεr and Lεr obtained from (4.22),

Lεr ≜ ω · ∂φ + ∂θ
(
Vεr ·

)
+ ∂θLεr. (4.54)

The function r is linked to the reversible torus i0 in the following way

r(φ, ·) ≜ A
(
i0(φ)

)
, r(−φ,−θ) = r(φ, θ) (4.55)

and satisfies the following estimates

∥r∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s , ∥∆12r∥γ,Oq,s ≲ ∥∆12i∥γ,Oq,s + ∥∆12i∥γ,Oq,s0 max
j∈{1,2}

∥Ij∥γ,Oq,s . (4.56)

Finally, the operator R is an integral operator with kernel J satisfying the symmetry property

J (−φ,−θ,−η) = J (φ, θ, η) (4.57)

and the following estimates for all ℓ ∈ N,

sup
η∈T

∥(∂ℓθJ )(∗, ·, �, η + �)∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s+3+ℓ (4.58)

and
sup
η∈T

∥∆12(∂
ℓ
θJ )(∗, ·, �, η + �)∥γ,Oq,s ≲ ∥∆12i∥γ,Oq,s+3+ℓ + ∥∆12i∥γ,Oq,s0+3 max

j∈{1,2}
∥Ij∥γ,Oq,s+3+ℓ. (4.59)

where ∗, ·, �, denote the variables α,φ, θ and Iℓ(φ) ≜ iℓ(φ)− (φ, 0, 0).

Now we shall start the reduction procedure of the operator L⊥. The first step is the reduction of the transport
part of Lεr in (4.54), which is done by conjugation with quasi-periodic symplectic change of variables close to
the identity similarly to [5, 15, 30, 51]. Actually, we apply here [51, Prop. 6.2]. The result is the following.
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Proposition 4.3. Let (d, s0, S, γ, q, q0) satisfy (4.2), (4.3), (4.4) and (4.49). We consider the following param-
eters

υ ≜ 1
q0+3 , τ1 ≜ dq0 + 1,

sl ≜ s0 + τ1q + τ1 + 2, µ2 ≜ 4τ1q + 6τ1 + 3,

sl ≜ sl + τ2q + τ2, sh ≜ 3
2µ2 + sl + 1,

σ1 ≜ s0 + τ1q + 2τ1 + 4, σ2 ≜ s0 + σ1 + 3.

(4.60)

For every choice of additional parameters (µ2, p, sh) with the constraints

µ2 ⩾ µ2, p ⩾ 0, sh ⩾ max

(
3

2
µ2 + sl + 1, sh + p

)
, (4.61)

there exists ε0 > 0 such that if the following smallness condition holds

εγ−1Nµ2

0 ⩽ ε0, ∥I0∥γ,Oq,sh+σ2
⩽ 1, (4.62)

then there exist m∞i0 ∈W q,∞,γ(O,C) ε-close to the equilibrium one V0 in (4.25), namely

∥m∞i0 − V0∥γ,Oq ≲ ε (4.63)

and an invertible quasi-periodic symplectic change of variables B in the form

B ≜ (1 + ∂θβ)B, Bρ(µ, φ, θ) ≜ ρ
(
µ, φ, θ + β(µ, φ, θ)

)
, β ∈W q,∞,γ(O, HS)

with inverse B−1 in the form

B−1 = (1 + ∂yβ̂)B−1, B−1ρ(µ, φ, y) = ρ
(
µ, φ, y + β̂(µ, φ, y)

)
with

y = θ + β(µ, φ, θ) ⇔ θ = y + β̂(µ, φ, y)

enjoying the symmetry properties

β(α, ω,−φ,−θ) = −β(α, ω, φ, θ), β̂(α, ω,−φ,−θ) = −β̂(α, ω, φ, θ) (4.64)

and the following estimates for all s ∈ [s0, S]

∥B±1ρ∥γ,Oq,s + ∥B±1ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1
∥ρ∥γ,Oq,s0 (4.65)

and
∥β̂∥γ,Oq,s ≲ ∥β∥γ,Oq,s ≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ1

)
(4.66)

such that for any n ∈ N, then in restriction to the Cantor-like set

On,γ,τ1
transport(i0) ≜

⋂
(l,j)∈Zd×Z\{(0,0)}

|l|⩽Nn

{
(α, ω) ∈ O s.t.

∣∣ω · l + jm∞i0 (α, ω)
∣∣ > 4γυ⟨j⟩

⟨l⟩τ1

}
, (4.67)

the following reduction holds

Lεr ≜ B−1LεrB = ω · ∂φ + m∞i0 ∂θ + ∂θKα ∗ ·+ ∂θRεr +E0
n, (4.68)

with Kα as in (4.25) and E0
n = E0

n(α, ω, i0) a linear operator satisfying

∥E0
nρ∥γ,Oq,s0 ≲ εNµ2

0 N−µ2

n+1 ∥ρ∥
γ,O
q,s0+2. (4.69)

The operator Rεr is a real and reversibility preserving integral operator satisfying

∀s ∈ [s0, S], max
k∈{0,1,2}

∥∂kθRεr∥γ,OO-d,q,s ≲ εγ−1
(
1 + ∥I0∥γ,Oq,s+σ2

)
. (4.70)

In addition, for any tori i1 and i2 both satisfying (4.62), we have

∥∆12m
∞
i ∥γ,Oq ≲ ε∥∆12i∥γ,Oq,sh+2, ∥∆12β∥γ,Oq,sh+p + ∥∆12β̂∥γ,Oq,sh+p ≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ1

(4.71)

and

max
k∈{0,1}

∥∆12(∂
k
θRεr)∥γ,OO-d,q,sh+p ≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ2

. (4.72)
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Proof. Using the computations in [51, Prop. 6.2] and [42, Prop. 6.2] for the V E
εr and V SW

εr in (4.16)-(4.19), we
get the following estimate for Vεr in (4.22),

∥Vεr − V0∥γ,Oq,s ⩽ ∥V E

εr +
1
2∥

γ,O
q,s + ∥V SW

εr − I1K1∥γ,Oq,s ≲ ε
(
1 + ∥I0∥γ,Oq,s+1

)
.

This allows us to start a KAM reduction procedure as detailed in [51, prop 6.2], which provides On,γ,τ1
transport(i0),

m∞i0 , β and E0
n as in the statement, with the corresponding estimates (4.65), (4.66), (4.69), (4.71) and symmetry

(4.64) such that in restriction to On,γ,τ1
transport(i0) we have

B−1
(
ω · ∂φ + ∂θ

(
Vεr ·

))
B = ω · ∂φ + m∞i0 ∂θ +E0

n.

Now, we shall look at the conjugation effect on the nonlocal term. Refering to [51, Lem. 5.1] and [42, Lem.
5.1], we have the following decompositions for the operators in (4.17)-(4.20),

∂θL
E

εr = ∂θK ∗ ·+ ∂θL
E

εr,1, LE

εr,1(ρ)(φ, θ) ≜
ˆ
T
ρ(φ, η)KE

εr(φ, θ, η)dη, (4.73)

∂θL
SW

εr = ∂θQα ∗ ·+ ∂θL
SW

εr,1, LSW

εr,1(ρ)(α,φ, θ) ≜
ˆ
T
ρ(φ, η)KSW

εr (α,φ, θ, η)dη, (4.74)

where the kernels KE
εr and KSW

εr are respectively defined by

KE

εr(φ, θ, η) ≜ log
(
vεr(φ, θ, η)

)
, vεr(φ, θ, η) ≜

((
R(φ,θ)−R(φ,η)

2 sin( θ−η
2 )

)2

+R(φ, θ)R(φ, η)

) 1
2

KSW

εr (φ, θ, η) ≜ K (θ − η)Kεr,1(λ, φ, θ, η) + Kεr,2(λ, φ, θ, η), K (θ) ≜ sin2
(
θ
2

)
log
(∣∣sin ( θ2)∣∣) ,

Kεr,1(λ, φ, θ, η) ≜
∞∑

m=1

(2λ)2m

(m!)2 sin2m−2
(

θ−η
2

) (
1− vεr(φ, θ, η)

)
, λ ≜

1

α

Kεr,2(λ, φ, θ, η) ≜ log(λ) sin2
(
η − θ

2

)
Kεr,1(λ, φ, θ, η)−KE

εr(φ, θ, η)I0
(
λAεr(φ, θ, η)

)
+ f

(
λAεr(φ, θ, η)

)
− f

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣) , f analytic.

One can easily check that (4.55) implies

KE

εr(−φ,−θ,−η) = KE

εr(φ, θ, η), KSW

εr (α,−φ,−θ,−η) = KSW

εr (α,φ, θ, η) (4.75)

Hence, in restriction to On,γ,τ1
transport(i0) we have by (4.73)-(4.74),

B−1LεrB = ω · ∂φ + m∞i0 ∂θ + ∂θB−1LE

εrB + ∂θB−1LSW

εr B +E0
n

= ω · ∂φ + m∞i0 ∂θ + ∂θKα ∗ ·+ ∂θRεr +E0
n,

with
Rεr ≜ B−1LE

εr,1B + B−1LSW

εr,1B +
(
B−1

(
K ∗ ·

)
B −K ∗ ·

)
+
(
B−1

(
Qα ∗ ·

)
B −Qα ∗ ·

)
.

The estimates (4.70) and (4.72) are obtained similarly to [51, Prop. 6.2] and [42, Prop. 6.2] by using Lemma 4.3,
Lemma 4.1 and (4.66)-(4.71). In particular, the reversibility property follows from (4.75)-(4.64). This concludes
the proof of Proposition 4.3.

Then we study the action of the localization in the normal directions. For that, we introduce the operator

B⊥ ≜ Π⊥
S0BΠ⊥

S0 ,

which satisfies by virtue of (4.65) the following estimate

∥B±1
⊥ ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1

∥ρ∥γ,Oq,s0 . (4.76)

Hence, the result reads as follows.

Proposition 4.4. Let (d, s0, S, γ, q, q0, τ1, sh, sh, σ2, p) satisfy (4.2), (4.3), (4.4), (4.49), (4.60) and (4.61).
There exist ε0 > 0 and σ3 = σ3(τ1, q, d, s0) ⩾ σ2 such that if the following smallness condition holds

εγ−1Nµ2

0 ⩽ ε0, ∥I0∥γ,Oq,sh+σ3
⩽ 1,
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then for any n ∈ N∗, in restriction to the Cantor-like set On,γ,τ1
transport(i0) defined in (4.67), the following decompo-

sition holds

B−1
⊥ L⊥B⊥ =

(
ω · ∂φ + m∞i0 ∂θ + ∂θKα ∗ ·

)
Π⊥

S0 + R0 +E1
n

≜ ω · ∂φΠ⊥
S0 + D0 + R0 +E1

n

≜ L0 +E1
n. (4.77)

The operator D0 = Π⊥
S0D0Π

⊥
S0 is a reversible diagonal operator described by

D0el,j = id0j el,j , d0j (α, ω, i0) ≜ ΩE

j (α) + jr0(α, ω, i0), r0(α, ω, i0) ≜ m∞i0 (α, ω)− V0(α) (4.78)

with
∥r0∥γ,Oq ≲ ε, ∥∆12r

0∥γ,Oq ≲ ε∥∆12i∥γ,Oq,sh+2. (4.79)

The operator R0 = Π⊥
S0R0Π

⊥
S0 is a real and reversible Toeplitz in time integral operator satisfying

∀s ∈ [s0, S], max
k∈{0,1}

∥∂kθR0∥γ,OO-d,q,s ≲ εγ−1
(
1 + ∥I0∥γ,Oq,s+σ3

)
(4.80)

and
∥∆12R0∥γ,OO-d,q,sh+p ≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3

. (4.81)

The operator E1
n satisfies the following estimate

∥E1
nρ∥γ,Oq,s0 ≲ εNµ2

0 N−µ2

n+1 ∥ρ∥
γ,O
q,s0+2. (4.82)

In addition, the operator L0 satisfies

∀s ∈ [s0, S], ∥L0ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + εγ−1∥I0∥γ,Oq,s+σ3
∥ρ∥γ,Oq,s0 . (4.83)

Proof. The identities (4.53) and Id = ΠS0 +Π⊥
S0 imply

B−1
⊥ L⊥B⊥ = B−1

⊥ Π⊥
S0(Lεr − ε∂θR)B⊥

= B−1
⊥ Π⊥

S0LεrBΠ⊥
S0 − B−1

⊥ Π⊥
S0LεrΠS0BΠ⊥

S0 − εB−1
⊥ Π⊥

S0∂θRB⊥.

Now using (4.68) and the fact that

B−1
⊥ Π⊥

S0 = B−1
⊥ , [Π⊥

S0 , F ] = 0 = [ΠS0 , F ], F Fourier multiplier,

we obtain in restriction to the Cantor set On,γ,τ1
transport(i0) the following decomposition

B−1
⊥ Π⊥

S0LεrBΠ⊥
S0 = B−1

⊥ Π⊥
S0BLεrΠ

⊥
S0

=
(
ω · ∂φ + m∞i0 ∂θ + ∂θKα ∗ ·

)
Π⊥

S0 +Π⊥
S0∂θRεrΠ

⊥
S0 + B−1

⊥ BΠS0∂θRεrΠ
⊥
S0

+ B−1
⊥ Π⊥

S0BE0
nΠ

⊥
S0 .

Hence, using also (4.73), (4.74), one gets that in the Cantor set On,γ,τ1
transport(i0), the following identity holds

B−1
⊥ L̂ωB⊥ =

(
ω · ∂φ + m∞i0 ∂θ + ∂θKα ∗ ·

)
Π⊥

S0 +Π⊥
S0∂θRεrΠ

⊥
S0 + B−1

⊥ BΠS0∂θRεrΠ
⊥
S0

− B−1
⊥ Π⊥

S0
(
∂θ (Vεr·) + ∂θL

E

εr,1 + ∂θL
SW

εr,1

)
ΠS0BΠ⊥

S0 − εB−1
⊥ ∂θRB⊥ + B−1

⊥ Π⊥
S0BE0

nΠ
⊥
S0

≜ ω · ∂φΠ⊥
S0 + D0 + R0 +E1

n,

with
D0 ≜

(
m∞i0 ∂θ + ∂θKα ∗ ·

)
Π⊥

S0 , E1
n ≜ B−1

⊥ Π⊥
S0BE0

nΠ
⊥
S0 . (4.84)

The estimate (4.82) is obtained gathering (4.84), (4.65), (4.76), (4.69) and Lemma 4.1-(iii). The expression
(4.78) follows from the Fourier representation (4.28). The estimates (4.79) correspond to (4.63)-(4.71). The
estimates (4.80) and (4.81) are obtained by the same method as Lemma [51, Prop 6.3 and Lem. 6.3] by using
a nice duality representations of B±1

⊥ together with (4.58), (4.59), (4.70), (4.71) and (4.72) In particular, the
reversibility property of R0 is a consequence of (4.23), (4.57), (4.64), (4.75) and the reversibility property of
Rεr. To prove (4.83), we use Lemma 4.2-(ii) together with (4.63), (4.80) and

∀ 0 < λ0 < λ1, sup
j∈Z

(
|j| max

k∈J0,qK

∥∥(IjKj)
(k)
∥∥
L∞([λ0,λ1])

)
⩽ C(λ0, λ1).

The last estimate has been proved in [51, Lem. 5.1].
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The next step is to get rid of the remainder term R0. The properties (4.80), (4.81), (4.83) and Lemma 4.7-(v)
allows to start a KAM iterative procedure similar to [51, Prop. 6.5]. We also refer to [42, Prop. 6.4] for a brief
explaination of this method. The result reads as follows.

Proposition 4.5. Let (d, s0, S, γ, q, q0, τ1, sl, sl, sh, µ2, σ3) as in (4.2), (4.3), (4.4), (4.49), (4.60) and Proposition
4.4. Set

τ2 ≜ τ1 + dq0 + 1. (4.85)

For every choice of additional parameters (µ2, sh) enjoying the following constraints compatibles with (4.61) for
the choice p = 4τ2q + 4τ2,

µ2 ⩾ µ2 + 2τ2q + 2τ2, sh ⩾
3

2
µ2 + sl + 1, (4.86)

there exist ε0 ∈ (0, 1) and σ4 = σ4(τ1, τ2, q, d) ⩾ σ3 such that if the following smallness condition holds

εγ−2−qNµ2

0 ⩽ ε0, ∥I0∥γ,Oq,sh+σ4
⩽ 1, (4.87)

then there exists an operator Φ∞ : O → L
(
Hs ∩ L2

⊥
)
satisfying

∀s ∈ [s0, S], ∥Φ±1
∞ ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−2∥I0∥γ,Oq,s+σ4

∥ρ∥γ,Oq,s0 (4.88)

and a diagonal operator L∞ = L∞(α, ω, i0) in the form

L∞ = ω · ∂φΠ⊥
S0 + D∞ (4.89)

with D∞ = Π⊥
S0D∞Π⊥

S0 a reversible Fourier multiplier operator given by,

D∞el,j = i d∞j el,j , d∞j (α, ω, i0) ≜ d0j (α, ω, i0) + r∞j (α, ω, i0), sup
j∈Sc0

|j|∥r∞j ∥γ,Oq ≲ εγ−1 (4.90)

such that in restriction to the Cantor-like set

On,γ,τ1,τ2
remainder (i0) ≜

⋂
(l,j,j0)∈Zd×(Sc0)2

|l|⩽Nn
(l,j) ̸=(0,j0)

{
(α, ω) ∈ On,γ,τ1

transport(i0),
∣∣ω · l + d∞j (α, ω, i0)− d∞j0 (α, ω, i0)

∣∣ > 2γ⟨j−j0⟩
⟨l⟩τ2

}
(4.91)

we have
Φ−1

∞ L0Φ∞ = L∞ +E2
n, ∥E2

nρ∥γ,Oq,s0 ≲ εγ−2Nµ2

0 N−µ2

n+1 ∥ρ∥
γ,O
q,s0+1. (4.92)

Recall that the Cantor set On,γ,τ1
transport(i0), the operator L0 and the frequencies

(
d0j (α, ω, i0)

)
j∈Sc0

are respectively

given by (4.67), (4.77) and (4.78). Moreover, for two tori i1 and i2 both satisfying (4.87), we have

∀j ∈ Sc0, ∥∆12r
∞
j ∥γ,Oq ≲ εγ−1∥∆12i∥γ,Oq,sh+σ4

, ∥∆12d
∞
j ∥γ,Oq ≲ εγ−1|j|∥∆12i∥γ,Oq,sh+σ4

. (4.93)

Now, that we have completely diagonalized the operator L⊥ in (4.53) up to error terms, we can find an
almost approximate right inverse for it. This is done by almost inverting the operator L∞ in (4.89). The result
is stated below and its proof follows word by word [51, Prop. 6.6] or [42, Prop. 6.5]. Consequently, we omit the
proof and only mention that the estimates mainly follows from (4.76)-(4.88)-(4.69)-(4.82)-(4.92) and Lemma
4.1-(ii).

Proposition 4.6. Let (d, s0, S, γ, q, τ1, τ2, sh, µ2, σ4) as in (4.2), (4.3), (4.4), (4.49), (4.60), (4.85), (4.86) and
Proposition 4.5. There exists σ ≜ σ(τ1, τ2, q, d) ⩾ σ4 such that if the following smallness condition holds

εγ−2−qNµ2

0 ⩽ ε0, ∥I0∥γ,Oq,sh+σ ⩽ 1, (4.94)

(i) There exists a family of operators
(
Tn
)
n∈N defined on O satisfying

∀s ∈ [s0, S], sup
n∈N

∥Tnρ∥γ,Oq,s ≲ γ−1∥ρ∥γ,Oq,s+τ1q+τ1

and such that for any n ∈ N, in restriction to the Cantor set

On,γ,τ1
inversion(i0) ≜

⋂
(l,j)∈Zd×Sc0

|l|⩽Nn

{
(α, ω) ∈ O s.t.

∣∣ω · l + d∞j (α, ω, i0)
∣∣ > γ⟨j⟩

⟨l⟩τ1

}
, (4.95)

the following identity holds

L∞Tn = Id +E3
n, ∀s0 ⩽ s ⩽ s ⩽ S, ∥E3

nρ∥γ,Oq,s ≲ Ns−s
n γ−1∥ρ∥γ,Oq,s+1+τ1q+τ1

.

This means that we have an almost approximate right inverse for the operator L∞ in (4.89).
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(ii) There exists a family of operators
(
T⊥,n

)
n∈N defined on O satisfying

∀ s ∈ [s0, S], sup
n∈N

∥T⊥,nρ∥γ,Oq,s ≲ γ−1
(
∥ρ∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥ρ∥

γ,O
q,s0+σ

)
and such that in restriction to the Cantor set

Gn(γ, τ1, τ2, i0) ≜ On,γ,τ1
transport(i0) ∩ On,γ,τ1,τ2

remainder (i0) ∩ On,γ,τ1
inversion(i0), (4.96)

the following identity holds
L⊥T⊥,n = Id +En,

with En satisfying

∀ s ∈ [s0, S], ∥Enρ∥γ,Oq,s0 ≲ Ns0−s
n γ−1

(
∥ρ∥γ,Oq,s+σ + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0

)
+ εγ−3Nµ2

0 N−µ2

n+1 ∥ρ∥
γ,O
q,s0+σ.

Recall that L⊥, On,γ,τ1
transport(i0) and On,γ,τ1,τ2

remainder (i0) are respectively defined in (4.53), (4.67) and (4.91).

(iii) When restricted to the Cantor set Gn(γ, τ1, τ2, i0), we have also have the following splitting required to
apply the Berti-Bolle theory

L⊥ = L⊥,n + R⊥,n, L⊥,nT⊥,n = Id, R⊥,n = EnL⊥,n,

with the operators L⊥,n and R⊥,n defined in O and satisfying

∀s ∈ [s0, S], sup
n∈N

∥L⊥,nρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥
γ,O
q,s0+1,

∀s ∈ [s0, S], ∥R⊥,nρ∥γ,Oq,s0 ≲ Ns0−s
n γ−1

(
∥ρ∥γ,Oq,s+σ + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥

γ,O
q,s0+σ

)
+ εγ−3Nµ2

0 N−µ2

n+1 ∥ρ∥
γ,O
q,s0+σ.

Finally, as mentioned at the beginning of this subsection, we can apply the Berti-Bolle theory [11] and [40,
Sec. 6] to construct an approximate right inverse for the full linearized operator di,κF (i0, κ0). For a complete
proof of the result, the reader is refered to [40, Thm. 6.1].

Theorem 4.1. (Almost approximate right inverse)
Let (d, s0, S, γ, q, τ1, τ2, sh, µ2) satisfy (4.2), (4.3), (4.4), (4.49), (4.60), (4.85) and (4.86). Then there exists
σ = σ(τ1, τ2, d, q) > 0 and a family of reversible operators

(
T0,n

)
n∈N such that if the smallness condition (4.94)

holds, then for all g = (g1, g2, g3), satisfying

g1(φ) = g1(φ), g2(−φ) = −g2(φ) g3(−φ) = (S g3)(φ),

the function T0,ng satisfies

∀s ∈ [s0, S], ∥T0,ng∥γ,Oq,s ≲ γ−1
(
∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥

γ,O
q,s0+σ

)
.

Moreover T0,n is an almost-approximate right inverse of di,κF (i0, κ0) in the Cantor set Gn(γ, τ1, τ2, i0). More
precisely, for all (α, ω) ∈ Gn(γ, τ1, τ2, i0) we can write

di,κF (i0, κ0) ◦ T0,n − Id = E
(n)
1 + E

(n)
2 + E

(n)
3 ,

where the operators E
(n)
1 , E

(n)
2 and E

(n)
3 are defined in the whole set O with the estimates

∥E (n)
1 g∥γ,Oq,s0 ≲ γ−1∥F (i0, κ0)∥γ,Oq,s0+σ∥g∥

γ,O
q,s0+σ,

∀ b ⩾ 0, ∥E (n)
2 g∥γ,Oq,s0 ≲ γ−1N−b

n

(
∥g∥γ,Oq,s0+b+σ + ε∥I0∥γ,Oq,s0+b+σ

∥∥g∥γ,Oq,s0+σ

)
,

∀ b ∈ [0, S − s0], ∥E (n)
3 g∥γ,Oq,s0 ≲ N−b

n γ−2
(
∥g∥γ,Oq,s0+b+σ + εγ−2∥I0∥γ,Oq,s0+b+σ∥g∥

γ,O
q,s0+σ

)
+ εγ−4Nµ2

0 N−µ2
n ∥g∥γ,Oq,s0+σ.
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4.6 Construction of a non-trivial quasi-periodic solution

In this final section, we construct a non-trivial zero for the functional F defined by (4.48). It is obtained by
a Nash-Moser iteration procedure. At each step, we can find an approximate right inverse of the linearized
operator following the construction explained in the previous subsection. The proof is technical and already
detailed in the previous works [16, 40, 51]. Here, we may use the version exposed in [51, Prop. 7.1 and Cor.
7.1].

Proposition 4.7. (Nash-Moser)

(i) Let (d, s0, S, q, τ1, τ2, σ) as in (4.2), (4.3), (4.49), (4.60), (4.85) and Theorem 4.1. Consider the parameters
fixed by

µ1 ≜ 3q(τ2 + 2) + 6σ + 6, a1 ≜ 6q(τ2 + 2) + 12σ + 15,

µ2 ≜ 2q(τ2 + 2) + 5σ + 7, a2 ≜ 3q(τ2 + 2) + 6σ + 9,

sh ≜ s0 + 4q(τ2 + 2) + 9σ + 11, b1 ≜ 2sh − s0, a ≜ τ2 + 2

(4.97)

and
0 < a < 1

µ2+q+2 , γ ≜ εa, N0 ≜ γ−1. (4.98)

We consider the finite dimensional subspaces

En ≜
{
I = (Θ, I, z) s.t. Θ = PNnΘ, I = PNnI and z = PNnz

}
,

where PN is the projector defined by

f(φ, θ) =
∑

(l,j)∈Zd×Z

fl,je
i(l·φ+jθ) ⇒ PNf(φ, θ) =

∑
⟨l,j⟩⩽N

fl,je
i(l·φ+jθ).

There exist C∗ > 0 and ε0 > 0 such that for any ε ∈ [0, ε0] we get for all n ∈ N the following properties,

(a) There exists a q-times differentiable function

Wn : O → En−1 × Rd × Rd+1

(α, ω) 7→
(
In(α, ω), κn(α, ω)− ω, 0

)
satisfying W0 = 0 and if n ∈ N∗,

∥Wn∥γ,Oq,s0+σ ⩽ C∗εγ
−1Nqa

0 , ∥Wn∥γ,Oq,b1+σ ⩽ C∗εγ
−1Nµ1

n−1.

We set

U0 ≜
(
(φ, 0, 0), ω, (α, ω)

)
and if n ∈ N∗, Un ≜ U0 + Wn, Hn ≜ Un − Un−1.

Then

∀s ∈ [s0, S], ∥H1∥γ,Oq,s ⩽
1

2
C∗εγ

−1Nqa
0 , ∀ 2 ⩽ k ⩽ n, ∥Hk∥γ,Oq,s0+σ ⩽ C∗εγ

−1N−a2

k−1 .

We also have for n ⩾ 2,
∥Hn∥γ,Oq,sh+σ4

⩽ C∗εγ
−1N−a2

n−1 . (4.99)

(b) Define
in ≜ (φ, 0, 0) + In, γn ≜ γ(1 + 2−n) ∈ [γ, 2γ]. (4.100)

The torus in is reversible. Define also

A γ
0 ≜ O, A γ

n+1 ≜ A γ
n ∩ Gn(γn+1, τ1, τ2, in), (4.101)

with Gn(γn+1, τ1, τ2, in) as in (4.96). Consider the open sets

Oγ
n ≜

{
(α, ω) ∈ O s.t. dist

(
(α, ω),A γ

n

)
< γN−a

n

}
, dist(x,A) ≜ inf

y∈A
∥x− y∥.

Then we have
∥F (Un)∥

γ,Oγ
n

q,s0 ⩽ C∗εN
−a1
n−1 .
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(ii) There exists ε0 > 0 such that, for any ε ∈ (0, ε0), the following hold true. We consider the Cantor set G γ
∞

(related to ε through γ) and given by

G γ
∞ ≜

⋂
n∈N

A γ
n . (4.102)

There exists a q-times differentiable function

U∞ : O →
(
Td × Rd ×Hs0 ∩ L2

⊥
)
× Rd × Rd+1

(α, ω) 7→
(
i∞(α, ω), κ∞(α, ω), (α, ω)

)
such that

∀(α, ω) ∈ G γ
∞, F (U∞(α, ω)) = 0.

The torus i∞ is reversible and κ∞ ∈ W q,∞,γ(O,Rd). Furthermore, there exists a q-times differentiable
function α ∈ (α0, α1) 7→ ω(α, ε) such that

κ∞
(
α, ω(α, ε)

)
= −ωEq(α), ω(α, ε) = −ωEq(α) + r̄ε(α), ∥r̄ε∥γ,Oq ≲ εγ−1Nqa

0 , (4.103)

and
∀α ∈ C ε

∞, F
(
U∞(α, ω(α, ε))

)
= 0,

where the Cantor set C ε
∞ is defined by

C ε
∞ ≜

{
α ∈ (α0, α1) s.t.

(
α, ω(α, ε)

)
∈ G γ

∞

}
. (4.104)

Now to conclude the proof of Theorem 1.2, it remains to prove that the Cantor set C ε
∞ in (4.104) is not

empty. Actually, we can prove a lower bound measure for C ε
∞ which shows that when the magnitude of the

perturbation tends to zero, then the set of admissible parameters tends to be of full Lebesgue measure in
(α0, α1).

Proposition 4.8. Let (q0, υ, a) as in Lemma 4.9, (4.60) and (4.98). Then there exists C > 0 such that∣∣C ε
∞
∣∣ ⩾ (α1 − α0)− Cε

aυ
q0 , implying in turn lim

ε→0

∣∣C ε
∞
∣∣ = α1 − α0.

Proof. In view of (4.104) and (4.102), we can write

C ε
∞ =

⋂
n∈N

C ε
n , C ε

n ≜
{
α ∈ (α0, α1) s.t

(
α, ω(α, ε)

)
∈ A γ

n

}
. (4.105)

Hence,

(α0, α1) \ C ε
∞ =

(
(α0, α1) \ C ε

0

)
⊔

∞⊔
n=0

(
C ε
n \ C ε

n+1

)
. (4.106)

Observe that (4.103), (4.97) and (4.98) imply

sup
α∈(α0,α1)

|ω(α, ε) + ωEq(α)| ⩽ ∥r̄ε∥γ,Oq ⩽ Cεγ−1Nqa
0 = Cε1−a(1+qa), 0 < a <

1

1 + qa
.

Now by construction (4.50), the previous estimate implies for ε small enough

∀α ∈ (α0, α1), ω(α, ε) ∈ B(0, R0).

We immediately deduce that

C ε
0 = (α0, α1),

∣∣∣(α0, α1) \ C ε
∞

∣∣∣ ⩽ ∞∑
n=0

∣∣∣C ε
n \ C ε

n+1

∣∣∣. (4.107)

According to the notations (4.90) and (4.78), we denote the perturbed frequencies associated with the reduced
linearized operator at state in in the following way

d∞,n
j (α, ε) ≜ d∞j

(
α, ω(α, ε), in

)
= ΩE

j (α) + jr0,n(α, ε) + r∞,n
j (α, ε), (4.108)

with

r0,n(α, ε) ≜ m∞n (α, ε)− V0(α), m∞n (α, ε) ≜ m∞in (α, ω(α, ε)), r∞,n
j (α, ε) ≜ r∞j

(
α, ω(α, ε), in

)
. (4.109)
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Now, by construction, one can write in view of (4.105), (4.101), (4.96), (4.67), (4.91) and (4.95) for any n ∈ N,

C ε
n \ C ε

n+1 =
⋃

(l,j)∈Zd×Z\{(0,0)}
|l|⩽Nn

R
(0)
l,j (in)

⋃
(l,j,j0)∈Zd×(Sc0)2

|l|⩽Nn

R
(2)
l,j,j0

(in)
⋃

(l,j)∈Zd×Sc0
|l|⩽Nn

R
(1)
l,j (in), (4.110)

where

R
(0)
l,j (in) ≜

{
α ∈ C ε

n s.t.
∣∣∣ω(α, ε) · l + jm∞n (α, ε)

∣∣∣ ⩽ 4γυ
n+1⟨j⟩
⟨l⟩τ1

}
,

R
(2)
l,j,j0

(in) ≜
{
α ∈ C ε

n s.t.
∣∣∣ω(α, ε) · l + d∞,n

j (α, ε)− d∞,n
j0

(α, ε)
∣∣∣ ⩽ 2γn+1⟨j−j0⟩

⟨l⟩τ2

}
,

R
(1)
l,j (in) ≜

{
α ∈ C ε

n s.t.
∣∣∣ω(α, ε) · l + d∞,n

j (α, ε)
∣∣∣ ⩽ γn+1⟨j⟩

⟨l⟩τ1

}
.

Copying the proof of [51, Lem. 7.1] we can show, using in particular (4.99)-(4.79)-(4.93), that for any n ∈
N \ {0, 1} and any l ∈ Zd such that |l| ⩽ Nn−1, the following properties hold.

• For j ∈ Z with (l, j) ̸= (0, 0), we get R
(0)
l,j (in) = ∅.

• For (j, j0) ∈ (Sc0)2 with (l, j) ̸= (0, j0), we get R
(2)
l,j,j0

(in) = ∅.

• For j ∈ Sc0, we get R
(1)
l,j (in) = ∅.

This leads to write for any n ∈ N \ {0, 1},

C ε
n \ C ε

n+1 =
⋃

(l,j)∈Zd×Z\{(0,0)}
Nn−1<|l|⩽Nn

R
(0)
l,j (in) ∪

⋃
(l,j,j0)∈Zd×(Sc0)2

Nn−1<|l|⩽Nn

R
(2)
l,j,j0

(in) ∪
⋃

(l,j)∈Zd×Sc0
Nn−1<|l|⩽Nn

R
(1)
l,j (in). (4.111)

To estimate, we shall make use of Rüssmann’s Lemma 4.6. First notice that

W q,∞,γ(O,C) ↪→ Cq−1(O,C), q = q0 + 1,

imply that for any n ∈ N, the Cq0 regularity for the curves

α 7→ ω(α, ε) · l + jm∞n (α, ε), (l, j) ∈ Zd × Z\{(0, 0)},
α 7→ ω(α, ε) · l + d∞,n

j (α, ε)− d∞,n
j0

(α, ε), (l, j, j0) ∈ Zd × (Sc0)2,
α 7→ ω(α, ε) · l + d∞,n

j (α, ε), (l, j) ∈ Zd × Sc0.

In addition, the following perturbed Rüssmann conditions hold. They are obtained by a perturbative argument
from the equilibrium transversality conditions in Lemma 4.9 similarly to [51, Lem. 7.3] : for q0, C0 and ρ0 as
in Lemma 4.9, there exist ε0 > 0 small enough such that for any ε ∈ [0, ε0] we have

• For all (l, j) ∈ Zd+1 \ {(0, 0)} such that |j| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
α∈[α0,α1]

max
k∈J0,q0K

|∂kα
(
ω(α, ε) · l + jm∞n (α, ε)

)
| ⩾ ρ0⟨l⟩

2 .

• For all (l, j) ∈ Zd × Sc0 such that |j| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
α∈[α0,α1]

max
k∈J0,q0K

∣∣∂kα(ω(α, ε) · l + d∞,n
j (α, ε)

)∣∣ ⩾ ρ0⟨l⟩
2 .

• For all (l, j, j0) ∈ Zd × (Sc0)2 such that |j − j0| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
α∈[α0,α1]

max
k∈J0,q0K

∣∣∂kα(ω(α, ε) · l + d∞,n
j (α, ε)− d∞,n

j0
(α, ε)

)∣∣ ⩾ ρ0⟨l⟩
2 .

Notice that the proof of the previous transversality conditions requires in particular the estimates (4.117) and
(4.118). Thus, applying Lemma 4.6, we get for all n ∈ N,∣∣∣R(0)

l,j (in)
∣∣∣ ≲ γ

υ
q0 ⟨j⟩

1
q0 ⟨l⟩−1− τ1+1

q0 ,∣∣∣R(1)
l,j (in)

∣∣∣ ≲ γ
1
q0 ⟨j⟩

1
q0 ⟨l⟩−1− τ1+1

q0 , (4.112)∣∣∣R(2)
l,j,j0

(in)
∣∣∣ ≲ γ

1
q0 ⟨j − j0⟩

1
q0 ⟨l⟩−1− τ2+1

q0 .
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Since (4.111) is valid for n ∈ N \ {0, 1}, we first need to estimate the first two terms in the right hand-side of
(4.107). Fix k ∈ {0, 1}, then we have by Lemma 4.12

∣∣∣Ck \ Ck+1

∣∣∣ ≲ ∑
(l,j)∈Zd×Z\{(0,0)}

|j|⩽C0⟨l⟩,|l|⩽Nk

∣∣∣R(0)
l,j (ik)

∣∣∣+ ∑
(l,j,j0)∈Zd×(Sc0)2
|j−j0|⩽C0⟨l⟩,|l|⩽Nk

min(|j|,|j0|)⩽c2γ
−υ
k+1

⟨l⟩τ1

∣∣∣R(2)
l,j,j0

(ik)
∣∣∣+ ∑

(l,j)∈Zd×Sc0
|j|⩽C0⟨l⟩,|l|⩽Nk

∣∣∣R(1)
l,j (ik)

∣∣∣. (4.113)

Observe that for |j − j0| ⩽ C0⟨l⟩ and min(|j|, |j0|) ⩽ c2γ
−υ
k+1⟨l⟩τ1 , then

max(|j|, |j0|) = min(|j|, |j0|) + |j − j0| ⩽ c2γ
−υ
k+1⟨l⟩

τ1 + C0⟨l⟩ ≲ γ−υ⟨l⟩τ1 . (4.114)

Combining (4.112), (4.113) and (4.114), we get for k ∈ {0, 1},∣∣∣Ck \ Ck+1

∣∣∣ ≲ γ
1
q0

∑
(l,j)∈Zd×(S0)c

|j|⩽C0⟨l⟩

⟨j⟩
1
q0 ⟨l⟩−1− τ1+1

q0 + γ
1
q0

∑
(l,j,j0)∈Zd×(Sc0)2
|j−j0|⩽C0⟨l⟩,|l|⩽Nk

min(|j|,|j0|)⩽c2γ
−υ
k+1

⟨l⟩τ1

⟨j − j0⟩
1
q0 ⟨l⟩−1− τ2+1

q0

+ γ
υ
q0

∑
(l,j)∈Zd×Z\{(0,0)}

|j|⩽C0⟨l⟩

⟨j⟩
1
q0 ⟨l⟩−1− τ1+1

q0 .

Thus, by using (4.60) and (4.85), we deduce

max
k∈{0,1}

∣∣∣Ck \ Ck+1

∣∣∣ ≲ γ
1
q0

(∑
l∈Zd

⟨l⟩−
τ1
q0 + γ−υ

∑
l∈Zd

⟨l⟩τ1−1− τ2
q0

)
+ γ

υ
q0

∑
l∈Zd

⟨l⟩−
τ1
q0 (4.115)

≲ γ
min

(
υ
q0

, 1
q0

−υ
)
= γ

υ
q0 .

Now fix some n ⩾ 2. Using (4.111) and Lemma 4.12, we get∣∣∣Cn \ Cn+1

∣∣∣ ⩽ ∑
(l,j)∈Zd×Z\{(0,0)}

|j|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

∣∣∣R(0)
l,j (in)

∣∣∣+ ∑
(l,j,j0)∈Zd×(Sc0)2

|j−j0|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

min(|j|,|j0|)⩽c2γ
−υ
n+1

⟨l⟩τ1

∣∣∣R(2)
l,j,j0

(in)
∣∣∣+ ∑

(l,j)∈Zd×Sc0
|j|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

∣∣∣R(1)
l,j (in)

∣∣∣.

Therefore, we obtain from (4.112) and (4.114),

∣∣∣Cn \ Cn+1

∣∣∣ ≲ γ
1
q0

( ∑
l∈Zd

|l|>Nn−1

⟨l⟩−
τ1
q0 + γ−υ

∑
l∈Zd

|l|>Nn−1

⟨l⟩τ1−1− τ2
q0

)
+ γ

υ
q0

∑
l∈Zd

|l|>Nn−1

⟨l⟩−
τ1
q0 .

Hence, we infer

∞∑
n=2

∣∣∣Cn \ Cn+1

∣∣∣ ≲ γ
υ
q0 . (4.116)

Plugging (4.116) and (4.115) into (4.107) and using (4.98) yields∣∣∣(α0, α1) \ C ε
∞

∣∣∣ ≲ γ
υ
q0 = ε

aυ
q0 .

This achieves the proof of Proposition 4.8.

To conclude, it remains to prove the following lemma providing necessary constraints between time and
space Fourier modes so that the sets in (4.110) are not void.

Lemma 4.12. There exists ε0 such that for any ε ∈ [0, ε0] and n ∈ N the following assertions hold true.

(i) Let (l, j) ∈ Zd × Z \ {(0, 0)}. If R
(0)
l,j (in) ̸= ∅, then |j| ⩽ C0⟨l⟩.

(ii) Let (l, j, j0) ∈ Zd × (Sc0)2. If R
(2)
l,j,j0

(in) ̸= ∅, then |j − j0| ⩽ C0⟨l⟩.

(iii) Let (l, j) ∈ Zd × Sc0. If R
(1)
l,j (in) ̸= ∅, then |j| ⩽ C0⟨l⟩.
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(iv) Let (l, j, j0) ∈ Zd × (Sc0)2. There exists c2 > 0 such that if min(|j|, |j0|) ⩾ c2γ
−υ
n+1⟨l⟩τ1 , then

R
(2)
l,j,j0

(in) ⊂ R
(0)
l,j−j0

(in).

Proof. (i) Assume that R
(0)
l,j (in) ̸= ∅. Then, we can find α ∈ (α0, α1) such that

|ω(α, ε) · l + jm∞n (α, ε)| ⩽ 4γυ
n+1⟨j⟩
⟨l⟩τ1 .

By using the triangle and Cauchy-Schwarz inequalities together with (4.100), (4.98) and the fact that (α, ε) 7→
ω(α, ε) is bounded, we infer

|m∞n (α, ε)||j| ⩽ 4|j|γυn+1⟨l⟩−τ1 + |ω(α, ε) · l|
⩽ 4|j|γυn+1 + C⟨l⟩
⩽ 8εaυ|j|+ C⟨l⟩.

Now, by (4.109), we can write
m∞n (α, ε) = V0(α) + r0,n(α, ε).

Hence, applying (4.63), (4.98) and Proposition 4.7-(i)-(a) we find

∀k ∈ J0, qK, sup
n∈N

sup
α∈(α0,α1)

|∂kαr0,n(α, ε)| ⩽ γ−k sup
n∈N

∥r0,n∥γ,Oq

≲ εγ−k

≲ ε1−ak. (4.117)

Thus, for ε small enough, we obtain by (4.25) and the decay property of I1K1 on (0,∞),

inf
n∈N

inf
α∈(α0,α1)

|m∞n (α, ε)| ⩾ 1
2V0

(
1
α0

)
.

Hence, a suitable choice of ε small enough provides the constraint |j| ⩽ C0⟨l⟩ for some C0 > 0.

(ii) Observe that R
(2)
l,j0,j0

(in) = R
(0)
l,0 (in), so the case j = j0 can be included in the previous point. Now we

assume j ̸= j0 and R
(2)
l,j,j0

(in) ̸= ∅. There exists α ∈ (α0, α1) such that

|ω(α, ε) · l + d∞,n
j (α, ε)− d∞,n

j0
(α, ε)| ⩽ 2γn+1|j−j0|

⟨l⟩τ2 .

Applying the triangle and Cauchy-Schwarz inequalities, (4.100) and (4.98), we infer

|d∞,n
j (α, ε)− d∞,n

j0
(α, ε)| ⩽ 2γn+1|j − j0|⟨l⟩−τ2 + |ω(α, ε) · l|

⩽ 2γn+1|j − j0|+ C⟨l⟩
⩽ 4εa|j − j0|+ C⟨l⟩.

Now, similarly to (4.117), we may obtain from (4.90)-(4.98),

∀k ∈ J0, qK, sup
n∈N

sup
j∈Sc0

sup
α∈(α0,α1)

|j||∂kαr
∞,n
j (α, ε)| ⩽ γ−k sup

n∈N
sup
j∈Sc0

|j|∥r∞,n
j ∥γ,Oq

≲ εγ−1−k

≲ ε1−a(1+k). (4.118)

One obtains from the triangle inequality, Lemma 4.7-(iv), (4.117) and (4.118), up to taking ε sufficiently small

|d∞,n
j (α, ε)− d∞,n

j0
(α, ε)| ⩾ |ΩE

j (α)− ΩE

j0(α)| − |r0,n(α, ε)||j − j0| − |r∞,n
j (α, ε)| − |r∞,n

j0
(α, ε)|

⩾
(
Ω− Cε1−a

)
|j − j0|

⩾ Ω
2 |j − j0|.

The foregoing inequalities together give for ε small enough, the constraint |j − j0| ⩽ C0⟨l⟩, for some C0 > 0.

(iii) As previously, we can forget the case j = 0. Assume that j ̸= 0 and R
(1)
l,j (in) ̸= ∅. There exists α ∈ (α0, α1)

such that
|ω(α, ε) · l + d∞,n

j (α, ε)| ⩽ γn+1|j|
⟨l⟩τ1 .
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By the same techniques as in the other cases, we find

|d∞,n
j (α, ε)| ⩽ γn+1|j|⟨l⟩−τ1 + |ω(α, ε) · l|

⩽ 2εa|j|+ C⟨l⟩.

Now (4.108), the triangle inequality, Lemma 4.7-(iii), (4.117) and (4.118) imply

|d∞,n
j (α, ε)| ⩾ Ω|j| − |j||r0,n(α, ε)| − |r∞,n

j (α, ε)|
⩾ Ω|j| − Cε1−a|j|.

Gathering the foregoing inequalities gives(
Ω− Cε1−a − 2εa

)
|j| ⩽ C⟨l⟩.

Thus, for ε small enough we deduce the constraint |j| ⩽ C0⟨l⟩, for some C0 > 0.

(iv) We can forget the case j = j0. Assume j ̸= j0. The symmetry property d∞,n
−j = −d∞,n

j implies that without

loss of generality we can assume that 0 ⩽ j < j0. Take α ∈ R
(2)
l,j,j0

(in), i.e.∣∣ω(α, ε) · l + d∞,n
j (α, ε)± d∞,n

j0
(α, ε)

∣∣ ⩽ 2γn+1⟨j±j0⟩
⟨l⟩τ2 .

Putting together (4.108), (4.27) and the triangle inequality, we find∣∣ω(α, ε) · l + (j ± j0)m
∞
n (α, ε)

∣∣ ⩽ ∣∣ω(α, ε) · l + d∞,n
j (α, ε)± d∞,n

j0
(α, ε)

∣∣+ 1
2 (1± 1)

+ |jIj
(
1
α

)
Kj

(
1
α

)
± j0Ij0

(
1
α

)
Kj0

(
1
α

)
|+
∣∣r∞,n

j (α, ε)± r∞,n
j0

(α, ε)
∣∣.

Hence, we deduce∣∣ω(α, ε) · l + (j ± j0)m
∞
n (α, ε)

∣∣ ⩽ 2γn+1⟨j±j0⟩
⟨l⟩τ2 + |jIj

(
1
α

)
Kj

(
1
α

)
± j0Ij0

(
1
α

)
Kj0

(
1
α

)
| (4.119)

+ 1
2 (1± 1) +

∣∣r∞,n
j (α, ε)− r∞,n

j0
(α, ε)

∣∣.
It has been proved in [51, Lem. 7.2-(iv)] that

∀x > 0, |jIj(x)Kj(x)± j0Ij0(x)Kj0(x)| ⩽
⟨j±j0⟩

min(|j|,|j0|) ·

Additionally, (4.90) gives ∣∣r∞,n
j (α, ε)± r∞,n

j0
(α, ε)

∣∣ ⩽Cε1−a
(
|j|−1 + |j0|−1

)
⩽Cε1−a ⟨j±j0⟩

min(|j|,|j0|) ·

Also one has the trivial bound
1
2 (1± 1) ⩽ ⟨j±j0⟩

min(|j|,|j0|) .

Inserting the foregoing estimates into (4.119) yields∣∣ω(α, ε) · l + (j ± j0)m
∞
n (α, ε)

∣∣ ⩽ 2γn+1⟨j±j0⟩
⟨l⟩τ2 + C ⟨j±j0⟩

min(|j|,|j0|) ·

Thus, for min(|j|, |j0|) ⩾ 1
2Cγ

−υ
n+1⟨l⟩τ1 , then using (4.85), we get∣∣ω(α, ε) · l + (j ± j0)m

∞
n (α, ε)

∣∣ ⩽ 4γυ
n+1⟨j±j0⟩
⟨l⟩τ1 ·

This proves Lemma 4.12, taking c2 ≜ C
2 .

A Properties of modified Bessel functions

We collect here the definitions and useful properties of modified Bessel functions. The literature is huge as
regards these special functions and we may refer the reader to [1, 70] for a nice introduction. The modified
Bessel functions of first and second kind are defined as follows

Iν(z) ≜
+∞∑
m=0

(
z
2

)ν+2m

m!Γ(ν +m+ 1)
, |arg(z)| < π
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and

∀ν ∈ C\Z, Kν(z) ≜
π

2

I−ν(z)− Iν(z)

sin(νπ)
, ∀n ∈ Z, Kn(z) ≜ lim

ν→n
Kν(z), |arg(z)| < π.

Symmetry and positivity properties (see [1, p. 375]) :

∀n ∈ N, ∀x > 0, I−n(x) = In(x) ∈ R∗
+ and K−n(x) = Kn(x) ∈ R∗

+. (A.1)

Derivatives and Anti-derivatives :
If we set Zν(z) ≜ Iν(z) or e

iνπKν(z), then for all ν ∈ R, we have

Z ′
ν(z) = Zν−1(z)−

ν

z
Zν(z) = Zν+1(z) +

ν

z
Zν(z) (A.2)

and ˆ
zν+1Zν(z)dz = zν+1Zν+1(z). (A.3)

Power series extension for Kn (see [1, p. 375]) :

Kn(z) =
1

2

(z
2

)−n n−1∑
k=0

(n− k − 1)!

k!

(
−z
4

)k

+ (−1)n+1 ln
(z
2

)
In(z)

+
1

2

(
−z
2

)n +∞∑
k=0

(ψ(k + 1) + ψ(n+ k + 1))

(
z2

4

)k
k!(n+ k)!

,

where

ψ(1) ≜ −γ (Euler’s constant) ∀m ∈ N∗, ψ(m+ 1) ≜
m∑

k=1

1

k
− γ.

In particular

K0(z) = − log
(z
2

)
I0(z) +

+∞∑
m=0

(
z
2

)2m
(m!)2

ψ(m+ 1), (A.4)

so K0 behaves like a logarithm at 0.

Decay property for the product IνKν (see [8] and [26]) :
The application (x, ν) 7→ Iν(x)Kν(x) is strictly decreasing in each variable x, ν > 0.

Wronskian (see [1, p. 375]) :

I ′ν(z)Kν(z)− Iν(z)K
′
ν(z) = Iν(z)Kν+1(z) + Iν+1(z)Kν(z) =

1

z
. (A.5)

Ratio bounds (see [9]) :
For all n ∈ N and x > 0, we have 

xI ′n(x)

In(x)
<
√
x2 + n2

xK ′
n(x)

Kn(x)
< −

√
x2 + n2.

(A.6)

Asymptotic expension of small argument (see [1, p. 375]) :

∀n ∈ N∗, In(x) ∼
x→0

(
1
2x
)n

Γ(n+ 1)
and Kn(x) ∼

x→0

Γ(n)

2
(
1
2x
)n . (A.7)

Asymptotic expension of large argument (see [1, p. 375]) :

∀n ∈ N∗, In(x) ∼
x→+∞

ex√
2πx

and Kn(x) ∼
x→+∞

√
π

2x
e−x. (A.8)

Asymptotic of high order (see [1, p. 377]) :

∀x > 0, Iν(x) ∼
ν→+∞

1√
2πν

(ex
2ν

)ν
and Kν(x) ∼

ν→+∞

√
π

2ν

(ex
2ν

)−ν

. (A.9)
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B Local bifurcation theorem and singular integrals

We recall here the Crandall-Rabinowitz’s Theorem of local bifurcation theory which was used to find the periodic
solutions in Section 3. Its proof can be found in [24] and [54, p.15].

Theorem B.1 (Crandall-Rabinowitz). Let X and Y be two Banach spaces. Let V be a neighborhood of 0 in
X and let

F : R× V → Y
(Ω, x) 7→ F (Ω, x)

be a function of classe C1 with the following properties

(i) (Trivial solution) ∀Ω ∈ R, F (Ω, 0) = 0.

(ii) (Regularity) ∂ΩF , dxF and ∂ΩdxF exist and are continuous.

(iii) (Fredholm property) dxF (0, 0) is a Fredholm operator with index 0 and ker (dxF (0, 0)) = ⟨x0⟩.

(iv) (Transversality assumption) ∂ΩdxF (0, 0)[x0] ̸∈ R (dxF (0, 0)) .

If χ denotes any complement of ker (dxF (0, 0)) in X, then there exist

• U a neighborhood of (0, 0) in R× V,

• an interval (−a, a) for some a > 0,

• continuous functions ψ : (−a, a) → R and ϕ : (−a, a) → χ satisfying ψ(0) = 0 and ϕ(0) = 0

such that the set of the zeros of F in U can be described as the following two curves intersecting at (0, 0){
(Ω, x) ∈ U s.t. F (Ω, x) = 0

}
=
{(
ψ(s), sx0 + sϕ(s)

)
s.t. |s| < a

}
∪
{
(Ω, 0) ∈ U

}
.

Now, we also state some continuity properties of singular integral operators. We may refer to [36, 44, 56, 58]
for a proof of the following result.

Lemma B.1. Consider a function K : T× T → C such that for some C0 > 0 we have

• K is measurable on T× T \ {(w,w), w ∈ T} and

∀(w, τ) ∈ T2, w ̸= τ ⇒ |K(w, τ)| ⩽ C0.

• For any τ ∈ T, the application w 7→ K(w, τ) is differentiable in T \ {τ} and

∀(w, τ) ∈ T2, w ̸= τ ⇒ |∂wK(w, τ)| ⩽
C0

|w − τ |
.

Consider the operator TK defined by

TK(f)(w) =
 
T
K(w, τ)f(τ) dτ.

Then, the operator TK is continuous from L∞(T) to Cδ(T) for any 0 < δ < 1 and there exists Cδ > 0 such that

∥TK(f)∥Cδ(T) ⩽ CδC0∥f∥L∞(T).
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